From Renal Tissue Slices to Membrane Vesicles

  • Arnost Kleinzeller
Part of the People and Ideas book series (PEOPL)


This chapter appraises the development of investigative approaches for the dissection of renal function at the cellular level by experimentation in vitro. Such analysis cannot be separated from the nature of the questions asked and reflects the imagination of the investigators involved. The basic criterion for this evaluation has been set by Otto Warburg et al. [(113); translated by me from the German]:

There can be no argument about the unconditional priority of experiments in vivo. If manometric [e.g., in vitro] and in vivo experimentation are consistent, this offers the possibility of carrying out studies under simplified conditions. If, however, there is no consistence1, then experiments in vitro are biologically worthless.


Membrane Vesicle Renal Tubule Basolateral Membrane Kidney Cortex Renal Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abaza, N., J. Leighton, and S. G. Schultz. Effects of ouabain On the function and structure of a cell line Mdck derived from canine kidney. In Vitro 10: 172–183, 1974.CrossRefGoogle Scholar
  2. 2.
    Amsler, K., and J. S. CooK. Development of Na+-dependent hexose transport in a cultured line of porcine kidney cells. Am. J. Physiol. 242 (Cell Physiol. 11): C94 - C101, 1982.PubMedGoogle Scholar
  3. 3.
    Amsler, K., C. Shaffer, and J. S. Cook. Growth-dependent Aib and meAib uptake in Llc-PK1 cells: effects of differentiation inducers and of Tpa. J. Cell. Physiol. 114: 184–190, 1983.PubMedCrossRefGoogle Scholar
  4. 4.
    Arthus, M.-F., M. Bergeron, and C. R. Schriver. Topology of membrane exposure in the renal cortex slice. Studies of glutathione and maltose cleavage. Biochim. Biophys. Acta 692: 371–376, 1981.Google Scholar
  5. 5.
    Beck, J. C., and B. Sacktor. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J. Biol. Chem. 253: 5531–5535, 1978.PubMedGoogle Scholar
  6. 6.
    Berglund, F., C.-G. Helander, and R. B. Howe. Inorganic sulfate and thiosulfate: transport and competition in renal tubules of the dog. Am. J. Physiol. 198: 586–594, 1960.PubMedGoogle Scholar
  7. 7.
    Berndt, W. O. The accumulation of “C-hypoxanthine by slices of rabbit kidney cortex. Biochem. Pharmacol. 17: 605–615, 1968.PubMedCrossRefGoogle Scholar
  8. 8.
    Bishop, J. H. V., and R. Green. Glucose handling by distal portions of the nephron during pregnancy in the rat. J. Physiol. Lond. 336: 13 1142, 1983.Google Scholar
  9. 9.
    Bojesen, E., and P. P. Leyssac. The kidney cortex slice technique as a model for sodium transport in vivo. A quantitative evaluation. Acta Physiol. Scand. 65: 20–32, 1965.CrossRefGoogle Scholar
  10. 10.
    Booth, A. G., and A. J. Kenny. A rapid method for the preparation of microvilli from rabbit kidney. Biochem. J. 142: 575–581, 1974.PubMedGoogle Scholar
  11. 11.
    Boumendil-Podevin, E. F., and R. A. Podevin. Isolation of baso-lateral and brush-border membranes from rabbit kidney cortex. Vesicle integrity and membrane sidedness of the baso-lateral fraction. Biochim. Biophys. Acta 735: 86–94, 1983.CrossRefGoogle Scholar
  12. 12.
    Brown, C. D. A., M. Bodmer, J. Biber, and H. Murer. Sodium-dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (Llc-PK1). Biochim. Biophys. Acta 769: 47 1478, 1984.Google Scholar
  13. 13.
    Burg, M. B., and J. Orloff. Oxygen consumption and active transport in separated renal tubules. Am. J. Physiol. 203: 327–330, 1962.PubMedGoogle Scholar
  14. 14.
    Cameron, G., and R. Chambers. Direct evidence of function in kidney of an early human fetus. Am. J. Physiol. 123: 482–485, 1938.Google Scholar
  15. 15.
    Chambers, R., and E. L. Chambers. Explorations Into the Nature of the Living Cell. Cambridge, MA: Harvard Univ. Press, 1961.Google Scholar
  16. 16.
    Chambers, R., and R. T. Kempton. Indications of function of the chick Renal Physiology mesonephros in tissue culture with phenol red. J. Cell. Comp. Physiol. 3: 131–167, 1933.CrossRefGoogle Scholar
  17. 17.
    Crane, R. K. Intestinal absorption of sugars. Physiol. Rev. 40: 794825, 1960.Google Scholar
  18. 18.
    Crane, R. K., P. Malathi, H. Preiser, and P. Fairclough. Some characteristics of kidney Na+-dependent glucose carrier reconstituted into sonicated liposomes. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3 ): E1 — E5, 1978.Google Scholar
  19. 19.
    Cross, R. J., and J. V. Taggart. Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Am. J. Physiol. 161: 18 1190, 1950.Google Scholar
  20. 20.
    Dawson, A. G. Preparation and some properties of a suspension of fragmented tubules from rat kidney. Biochem. J. 130: 525–532, 1972.PubMedGoogle Scholar
  21. 21.
    Deutsch, W. An improvement of Warburg’s method for cutting tissue slices for respiratory experiments (Abstract). J. Physiol. Lond. 87: 56P - 57P, 1936.Google Scholar
  22. 22.
    Deyrup, I. J., and R. E. Davies. The effect of temperature on the uptake of radiosulfate by rat renal tissue from radiosulfate containing solutions in vitro. J. Gen. Physiol. 44: 555–569, 1961.PubMedCrossRefGoogle Scholar
  23. 23.
    Dworzak, D. L., and J. J. Grantham. Preparation of renal papillary collection duct cells for study in vitro. Kidney Int. 8: 191–194, 1975.CrossRefGoogle Scholar
  24. 24.
    Eveloff, J., W. Haase, and R. Kinne. Separation of renal medullary cells: isolation of cells from the thick ascending limb of Henle’s loop. J. Cell Biol. 87: 672–681, 1980.PubMedCrossRefGoogle Scholar
  25. 25.
    Folkert, V. W., and D. Schlondorff. Altered prostaglandin synthesis by glomeruli from rats with unilateral ureteral ligation. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10 ): F289 — F299, 1981.Google Scholar
  26. 26.
    FoNG, J. S. C., and K. N. Drummond. Method for preparation of glomeruli for metabolic studies. J. Lab. Clin. Med. 71: 1034–1039, 1968.Google Scholar
  27. 27.
    FoNG, J. S. C., and K. N. Drummond. Glomerular metabolism. Glucose and palmitic acid oxidation in normal and nephrotoxic nephritic rats. Lab. Invest. 20: 512–515, 1969.Google Scholar
  28. 28.
    Forster, R. P. Use of thin kidney slices and isolated renal tubules for direct study of cellular transport kinetics. Science Wash. DC 108: 6567, 1948.Google Scholar
  29. 29.
    Forster, R. P., and J. H. Copenhaver, JR. Intracellular accumulation as an active process in a mammalian renal transport system in vitro. Energy dependence and competitive phenomena. Am. J. Physiol. 186: 167–171, 1956.PubMedGoogle Scholar
  30. 30.
    Forster, R. P., and S. K. Hong. In vitro transport of dyes by isolated renal tubules of the flounder as disclosed by direct visualization. Intracellular accumulation and transcellular movement. J. Cell. Comp. Physiol. 51: 259–272, 1956.Google Scholar
  31. 31.
    Forster, R. P., and J. V. Taggart. Use of isolated renal tubules for the examination of metabolic processes associated with active cellular transport. J. Cell. Comp. Physiol. 36: 251–270, 1950.CrossRefGoogle Scholar
  32. 32.
    Fox, M., S. Thier, L. Rosenberg, and S. Segal. Ionic requirements for amino acid transport in the rat kidney cortex slices. I. Influence of extracellular ions. Biochim. Biophys. Acta 79: 167–176, 1964.PubMedGoogle Scholar
  33. 33.
    FRÖMter, E. Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomena. Pfluegers Arch. 393: 179–189, 1982.CrossRefGoogle Scholar
  34. 34.
    Gaines, N., and H. Hauser. Leakiness of brush-border vesicles. Biochim. Biophys. Acta 772: 161–166, 1984.CrossRefGoogle Scholar
  35. 35.
    Guder, W. G., W. Wiesner, B. Stakowski, and O. Wieland. Metabolism of isolated kidney tubules. Hoppe-Seyler’s Z. Physiol. Chem. 352: 1319–1328, 1971.CrossRefGoogle Scholar
  36. 36.
    Gyorgy, P., W. Keller, and T. Brehme. Nierenstoffwechsel und Nierenentwicklung. Biochem. Z. 220: 356–366, 1928.Google Scholar
  37. 37.
    Haase, W., A. SchÄFer, H. Murer, and R. Kinne. Studies on the orientation of brush-border membrane vesicles. Biochem. J. 172: 5762, 1978.Google Scholar
  38. 38.
    Handler, J. S., F. M. Perkins, and J. P. Johnson. Studies of renal cell function using cell culture techniques. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F1 — F9, 1980.Google Scholar
  39. 39.
    Heidrich, H. G., and M. E. Dew. Homogeneous cell populations from rabbit kidney cortex. Proximal, distal tubule, and renin-active cells isolated by free-flow electrophoresis. J. Cell Biol. 74: 780–788, 1977.Google Scholar
  40. 40.
    Heidrich, H. G., R. Kinne, E. Kinne-Saffran, and K. Hannig. The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings. J. Cell Biol. 54: 232–245, 1972.PubMedCrossRefGoogle Scholar
  41. 41.
    Henry, H. L. Regulation of the hydroxylation of 25-hydroxyvitamin D3 in vivo and in primary cultures of chick kidney cells. J. Biol. Chem. 254: 2722–2729, 1979.Google Scholar
  42. 42.
    Holm, J. In vitro studies on the uptake of ‘4C-labeled tetraethylammonium in mouse kidney. Acta Pharmacol. Toxicol. 31: 129–137, 1972.Google Scholar
  43. 43.
    Hopfer, U. Kinetic criteria for carrier-mediated transport mechanisms in membrane vesicles. Federation Proc. 40: 2480–2485, 1981.Google Scholar
  44. 44.
    Hopfer, U., T. D. Crowe, and B. Tandler. Purification of brush-border membrane by thiocyanate treatment. Anal. Biochem. 131: 447–452, 1983.PubMedCrossRefGoogle Scholar
  45. 45.
    Hurley, A. F. Discovery: accident or design? The Florey lecture. Proc. R. Soc. Lond. B Biol. Sci. 216: 253–266, 1982.CrossRefGoogle Scholar
  46. 46.
    Hwang, S. M., J. Foreman, and S. Segal. Developmental pattern of cystine transport in isolated rat renal tubules. Biochim. Biophys. Acta 690: 145–153, 1982.PubMedCrossRefGoogle Scholar
  47. 47.
    Johnson, P. A., and R. M. Johnstone. Alterations in membrane permeability with trypsin treatment. Can. J. Biochem. 59: 668–675, 1981.Google Scholar
  48. 48.
    Jones, D. P., G.-B. Sundby, K. Ormstad, and S. Orrenius. Use of isolated kidney cells for the study of drug metabolism. Biochem. Pharmacol. 28: 929–935, 1979.PubMedCrossRefGoogle Scholar
  49. 49.
    Kashgarian, M. Use of monoclonal antibodies in the study of renal function. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16 ): F533 — F538, 1984.Google Scholar
  50. 50.
    Kenny, A. J., and S. Maroux. Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev. 62: 91–128, 1982.PubMedGoogle Scholar
  51. 51.
    King, P. A., K. W. Beyenbach, and L. Goldstein. Taurine transport by isolated flounder renal tubules. J. Exp. Zool. 223: 103–114, 1982.PubMedCrossRefGoogle Scholar
  52. 52.
    Kinne, R. Properties of the glucose transport system in the renal brush border membrane. Curr. Top. Membr. Transp. 8: 209–267, 1976.CrossRefGoogle Scholar
  53. 53.
    Kinter, W. B. Chlorphenol red influx and efflux: microspectrophotometry of flounder kidney tubules. Am. J. Physiol. 211: 1152–1164, 1966.PubMedGoogle Scholar
  54. 54.
    Kinter, W. B. Structure and function of renal tubules isolated from fish kidneys. Fortschr. Zool. 23: 223–231, 1975.Google Scholar
  55. 55.
    Kippen, I., B. Hirayama, J. R. Klinenberg, and E. W. Wright. Effects of dibutyryl cyclic Amp on the transport of a-methyl-n-glucoside and a-aminoisobutyric acid in separated tubules and brush border membranes from rabbit kidney. Biochim. Biophys. Acta 558: 126–135, 1979.PubMedCrossRefGoogle Scholar
  56. 56.
    Kleinzeller, A. The Na-independent transport of sugars in renal tubular cells. In: Na-Linked Transport of Organic Solutes, edited by E. Heinz. New York: Springer-Verlag, 1972, p. 109–115.CrossRefGoogle Scholar
  57. 57.
    Kleinzeller, A., and A. Knotkova. The steady-state efflux of Na+, K+ and Cl-from kidney cortex slices. Physiol. Bohemoslov. 16: 214–226, 1967.PubMedGoogle Scholar
  58. 58.
    Kleinzeller, A., J. Kolinska, and I. Benes. Transport of monosaccharides in kidney cortex cells. Biochem. J. 104: 852–860, 1967.PubMedGoogle Scholar
  59. 59.
    Kleinzeller, A., and A. KoTyk. Cations and transport of galactose in kidney-cortex slices. Biochim. Biophys. Acta 54: 367–369, 1961.PubMedCrossRefGoogle Scholar
  60. 60.
    Kleinzeller, A., and E. M. McAvoy. Sugar transport across the peri-tubular face of renal cells of the flounder. J. Gen. Physiol. 62: 169–184, 1973.PubMedCrossRefGoogle Scholar
  61. 61.
    Koefoed-Johnsen, V., and H. H. UssIng. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.CrossRefGoogle Scholar
  62. 62.
    Kragh-Hansen, V., H. Roigaard-Petersen, C. Jacobsen, and M. I. Sheikh. Tubular localization of Na+-dependent phenylalanine and glucose transport system. Biochem. J. 220: 15–24, 1984.Google Scholar
  63. 63.
    Krane, S. M., and R. K. Crane. The accumulation of D-galactose against a concentration gradient by slices of rabbit kidney cortex. J. Biol. Chem. 234: 211–219, 1959.PubMedGoogle Scholar
  64. 64.
    Krebs, H. A. Untersuchungen über den Stoffwechsel der Aminosäuren im Tierkorper. Hoppe Seyler’s Z. Physiol. Chem. 217: 191–227, 1933.CrossRefGoogle Scholar
  65. 65.
    Krebs, H. A. The synthesis of glutamine from glutamic acid and ammonia and the enzyme hydrolysis of glutamine in animal tissues. Biochem. J. 291: 1951–1969, 1935.Google Scholar
  66. 66.
    Krebs, H. A. Body size and tissue respiration. Biochim. Biophys. Acta 4: 249–269, 1950.PubMedCrossRefGoogle Scholar
  67. 67.
    Krebs, H. A. Otto Warburg: Cell Physiologist, Biochemist and Eccentric. Oxford, UK: Clarendon, 1981.Google Scholar
  68. 68.
    Krebs, H. A., D. A. H. Bennett, P. DE Gasquet, and T. Yoshida. Renal gluconeogenesis. The effect of diet in the gluconeogenic capacity of rat-kidney-cortex slices. Biochem. J. 86: 22–27, 1963.Google Scholar
  69. 69.
    Krebs, H. A., N. W. Cornell, P. Lund, and R. Hems. Isolated liver cells as experimental material. In: Regulation of Hepatic Metabolism,edited by F. Lundquist and N. Tygstrup. Copenhagen: Munksgaard, 1974, p. 726–750. (Alfred Benzon Symp. 6.)Google Scholar
  70. 70.
    Krebs, H. A., P. Lund, and M. Edwards. Criteria of metabolic competence of isolated hepatocytes. In: Cell Populations (Methodological Surveys in Biochemistry), edited by E. Reid. New York: Wiley, 1979, p. 1–6.Google Scholar
  71. 71.
    Leaf, A. On the mechanism of fluid exchange of tissues in vitro. Biochem. J. 62: 241–248, 1956.PubMedGoogle Scholar
  72. 72.
    Lee, J. B., V. K. Vance, and G. F. Cahill, JR. Metabolism of C14-labeled substrates by rabbit kidney cortex and medulla. Am. J. Physiol. 203: 27–36, 1962.PubMedGoogle Scholar
  73. 73.
    Leuthardt, I. Untersuchungen über die Diffusion in Gewebsschnitten. Biochem. Z. 299: 281–306, 1938.Google Scholar
  74. 74.
    Liang, C. T., J. Barnes,. L. Cheng, R. Balakir, and B. Sacktor. Effects of 1,25-(OH)2D3 administered in vivo on phosphate uptake by isolated chick renal cells. Am. J. Physiol. 242 (Cell Physiol. 11 ): C312 - C318, 1982.Google Scholar
  75. 75.
    Lowenstein, L., K. Hummeler, I. Smith, and S. Segal. The effect of storage at 4°C on amino acid transport by rat kidney cortex slices. Biochim. Biophys. Acta 150: 416–423, 1968.PubMedCrossRefGoogle Scholar
  76. 76.
    Lowry, O. H., and J. V. Passonneau. A Flexible System of Enzymatic Analysis. New York: Academic, 1972.Google Scholar
  77. 77.
    Maack, T., and W. B. Kinter. Transport of protein by flounder kidney tubules during long-term incubation. Am. J. Physiol. 216: 1034–1043, 1969.Google Scholar
  78. 78.
    Mamelok, R. D., D. R. Macrae, L. Z. Benet, and S. B. Prusiner. Membrane populations of bovine choroid plexus: separation by density gradient centrifugation in modified colloidal silica. J. Neurochem. 37: 768–774, 1981.PubMedCrossRefGoogle Scholar
  79. 79.
    Martel-Pelletier, J., D. Guerette, and M. Bergeron. Morphological changes during incubation of renal slices. Lab. Invest. 36: 509–518, 1977.Google Scholar
  80. 80.
    Miller, D., and R. K. Crane. The digestive function of epithelium of the small intestine. Biochim. Biophys. Acta 52: 293–298, 1961.PubMedCrossRefGoogle Scholar
  81. 81.
    Moran, A., J. S. Handler, and R. J. Turner. Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line. Am. J. Physiol. 243 (Cell Physiol. 12 ): C293 - C298, 1982.Google Scholar
  82. 82.
    Mudge, G. H. Studies on potassium accumulation by rabbit kidney slices: effect of metabolic activity. Am. J. Physiol. 165: 113–127, 1951.PubMedGoogle Scholar
  83. 83.
    Mullin, J. M., L. Fluk, and A. Kleinzeller Basal-lateral transport and transcellular flux of methyl-a-D-glucoside across Llc-Pki renal epithelial cells. Biochim. Biophys. Acta. 885: 233–239, 1986.PubMedCrossRefGoogle Scholar
  84. 84.
    Mullin, J. M, L. Fluk, and T. Tchao. Mitosis in domes of renal epithelial (Llc-PK1) cell culture. J. Mol. Physiol. 8: 813–828, 1985.Google Scholar
  85. 85.
    Mullin, J. M., F. Weibel, L. Diamond, and A. Kleinzeller Sugar transport in the Llc-Pki renal epithelial cell line: similarity to mammalian kidney and the influence of cell density. J. Cell. Physiol. 104: 375–389, 1980.PubMedCrossRefGoogle Scholar
  86. 86.
    Murer, H., and R. Kinne. The use of isolated membrane vesicles to study epithelial transport processes. J. Membr. Biol. 55: 81–95, 1980.PubMedCrossRefGoogle Scholar
  87. 87.
    Murthy, L., and E. C. Foulkes Movement of solutes across luminal cell membranes in kidney tubules of the rabbit. Nature Lond. 213: 180–181, 1967.PubMedCrossRefGoogle Scholar
  88. 88.
    Nord, E. P., S. H. Wright, I. Kippen, and E. M. Wright. Specificity of the Na+-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes. J. Membr. Biol. 72: 213–221, 1983.PubMedCrossRefGoogle Scholar
  89. 89.
    Ojakian, G. K., and D. A. Herzlinger. Analysis of epithelial cell surface 1 161 polarity with monoclonal antibodies. Federation Proc. 43: 2208–2216, 1984.Google Scholar
  90. 90.
    Okamoto, Y. Über Anaerobiose von Tumorgewebe. Biochem. Z. 160: 52–651925.Google Scholar
  91. 91.
    Platts, M. M., and G. H. Mudge. Accumulation of uric acid by slices of kidney cortex. Am. J. Physiol. 200: 387–392, 1961.Google Scholar
  92. 92.
    Podevin, R. A., E. F. Boumendil-Podevin, and C. Priol. Concentrative Pah transport by rabbit kidney slices in the absence of metabolic energy. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4 ): F278 — F285, 1978.Google Scholar
  93. 93.
    Preuss, H. G., S. T. Eastman, O. Vavatsi-Manos, K. Baird, and D. M. RoxE. The regulation of renal ammoniagenesis in the rat by extracellular factors. I. The combined effects of acidosis and physiologic fuels. Metabolism 27: 1626–1638, 1978.PubMedCrossRefGoogle Scholar
  94. 94.
    Rabito, C. A. Phosphate uptake by a kidney cell line (Llc-PK,). Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14 ): F22 — F31, 1983.Google Scholar
  95. 95.
    Renfro, J. L. Calcium transport across peritubular surface of the marine teleost renal tubule. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3 ): F522 — F531, 1978.Google Scholar
  96. 96.
    Renfro, J. L., and J. B. Pritchard. Htdependent sulfate secretion in the marine teleost renal tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12 ): F150 — F159, 1982.Google Scholar
  97. 96a.
    RosE, R. C., J. Bianchi, and S. A. Schuette. Effective use of renal cortical slices in transport and metabolic studies. Biochim. Biophys. Acta 821: 431–436, 1985.Google Scholar
  98. 97.
    Rosenberg, L. E., A. Blair, and S. Segal. The transport of amino acids in rat kidney cortex slices. Biochim. Biophys. Acta 54: 479–488, 1961.PubMedCrossRefGoogle Scholar
  99. 98.
    Rozen, R., and C. R. Scriver. Renal transport of taurine adapts to perturbed taurine homeostasis. Proc. Natl. Acad. Sci. Usa 79: 2101 2105, 1982.Google Scholar
  100. 99.
    Rucc, E. L., and N. L. Simmons. Control of cultured epithelial (Mdck) cell transport function: identification of a ß-adrenoreceptor coupled to adenylate cyclase. Q. J. Exp. Physiol. 69: 339–353, 1984.Google Scholar
  101. 100.
    Saler, M. H. Application of the microbiological approach to the study of passive monovalent salt transport in a kidney epithelial cell line, Mdck. In: Tissue Culture of Epithelial Cells, edited by M. Taub. New York: Plenum, 1985, p. 51–66.Google Scholar
  102. 101.
    Sakhrani, L. M., B. Badie-Dezfooly, W. Trizna, N. Mikhail, A. G. Lowe, M. Taub, and L. G. Fine. Transport and metabolism of glucose by renal proximal tubular cells in primary culture. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15 ): F757 — F764, 1984.Google Scholar
  103. 102.
    Schmidt, U., and U. C. Dubach. Differential enzymatic behaviour of single proximal segments of the superficial and juxtamedullary nephron. Z. Gesamte Exp. Med. 151: 93–102, 1969.Google Scholar
  104. 103.
    Scholer, D. W., and I. S. Edelman. Isolation of rat kidney cortical tubules enriched in proximal and distal segments. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6 ): F350 — F359, 1979.Google Scholar
  105. 104.
    Shannon, J. A. Renal tubular excretion. Physiol. Rev. 19: 63–93, 1939.Google Scholar
  106. 105.
    Simmons, N. L., C. D. A. Brown, and E. L. Rugc. The action of epinephrine on Madin-Darby canine kidney cells. Federation Proc. 43: 2225–2229, 1984.Google Scholar
  107. 106.
    Smith, W. L., and A. Garcia-Perez. Immunodissection: use of monoclonal antibodies to isolate specific types of renal cells. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17 ): F1 — F7, 1985.Google Scholar
  108. 107.
    Tanner, C., D. A. Frambach, and D. S. Misfeldt. Biophysics of domes formed by the renal cell line Madin-Darby canine kidney. Federation Proc. 43: 2217–2220, 1984.Google Scholar
  109. 108.
    Taub, M. (editor). Tissue Culture of Epithelial Cells. New York: Plenum, 1985.Google Scholar
  110. 109.
    Turner, R. J., and A. Moran. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F406 — F414, 1982.PubMedGoogle Scholar
  111. 110.
    Ullrich, K. J., G. Rumrich, and S. KLöss. Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pfluegers Arch. 351: 35–48, 1974.CrossRefGoogle Scholar
  112. 111.
    Vinay, P., A. GouGoux, and G. Lemieux. Isolation of a pure suspension of rat proximal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10 ): F403 — F411, 1981.Google Scholar
  113. 112.
    Warburg, O. Versuche am überlebendem Carcinomgewebe. Biochem. Z. 142: 317–333, 1923.Google Scholar
  114. 113.
    Warburg, O., K. Gawehn, and A.-W. Geissler. Stoffwechsel von embryonalen Zellen und von Krebszellen. Z. Naturforsch. 11b: 657–662, 1956.Google Scholar
  115. 114.
    Wedeen, R. P., and B. Weiner. The distribution of p-aminohippuric acid in rat kidney slices. I. Tubular localization. Kidney Int. 3: 205213, 1973.Google Scholar
  116. 115.
    Wedeen, R. P., and B. Weiner. The distribution of p-aminohippuric acid in rat kidney slices. II. Depth of uptake. Kidney Int. 3: 214–221, 1973.PubMedCrossRefGoogle Scholar
  117. 116.
    Weidemann, M. J., and H. A. Krebs. The fuel of respiration of rat kidney cortex. Biochem. J. 112: 149–166, 1969.PubMedGoogle Scholar
  118. 117.
    Wilson, T. H. Ionic permeability and osmotic swelling of cells. Science Wash. DC 120: 104–105, 1954.CrossRefGoogle Scholar
  119. 118.
    Woodhall, P. B., C. C. Tisher, C. A. Simonton, and R. R. Robinson. Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules. J. Clin. Invest. 61: 1320–1329, 1978.PubMedCrossRefGoogle Scholar
  120. 119.
    Wright, S. H., I. Kippen, J. R. Klinenberg, and E. M. Wright. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders. J. Membr. Biol. 57: 73–82, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 1987

Authors and Affiliations

  • Arnost Kleinzeller

There are no affiliations available

Personalised recommendations