Skip to main content

From Renal Tissue Slices to Membrane Vesicles

  • Chapter
  • 393 Accesses

Part of the book series: People and Ideas ((PEOPL))

Abstract

This chapter appraises the development of investigative approaches for the dissection of renal function at the cellular level by experimentation in vitro. Such analysis cannot be separated from the nature of the questions asked and reflects the imagination of the investigators involved. The basic criterion for this evaluation has been set by Otto Warburg et al. [(113); translated by me from the German]:

There can be no argument about the unconditional priority of experiments in vivo. If manometric [e.g., in vitro] and in vivo experimentation are consistent, this offers the possibility of carrying out studies under simplified conditions. If, however, there is no consistence1, then experiments in vitro are biologically worthless.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Abaza, N., J. Leighton, and S. G. Schultz. Effects of ouabain On the function and structure of a cell line Mdck derived from canine kidney. In Vitro 10: 172–183, 1974.

    Article  CAS  Google Scholar 

  2. Amsler, K., and J. S. CooK. Development of Na+-dependent hexose transport in a cultured line of porcine kidney cells. Am. J. Physiol. 242 (Cell Physiol. 11): C94 - C101, 1982.

    PubMed  CAS  Google Scholar 

  3. Amsler, K., C. Shaffer, and J. S. Cook. Growth-dependent Aib and meAib uptake in Llc-PK1 cells: effects of differentiation inducers and of Tpa. J. Cell. Physiol. 114: 184–190, 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Arthus, M.-F., M. Bergeron, and C. R. Schriver. Topology of membrane exposure in the renal cortex slice. Studies of glutathione and maltose cleavage. Biochim. Biophys. Acta 692: 371–376, 1981.

    Google Scholar 

  5. Beck, J. C., and B. Sacktor. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J. Biol. Chem. 253: 5531–5535, 1978.

    PubMed  CAS  Google Scholar 

  6. Berglund, F., C.-G. Helander, and R. B. Howe. Inorganic sulfate and thiosulfate: transport and competition in renal tubules of the dog. Am. J. Physiol. 198: 586–594, 1960.

    PubMed  CAS  Google Scholar 

  7. Berndt, W. O. The accumulation of “C-hypoxanthine by slices of rabbit kidney cortex. Biochem. Pharmacol. 17: 605–615, 1968.

    Article  PubMed  CAS  Google Scholar 

  8. Bishop, J. H. V., and R. Green. Glucose handling by distal portions of the nephron during pregnancy in the rat. J. Physiol. Lond. 336: 13 1142, 1983.

    Google Scholar 

  9. Bojesen, E., and P. P. Leyssac. The kidney cortex slice technique as a model for sodium transport in vivo. A quantitative evaluation. Acta Physiol. Scand. 65: 20–32, 1965.

    Article  CAS  Google Scholar 

  10. Booth, A. G., and A. J. Kenny. A rapid method for the preparation of microvilli from rabbit kidney. Biochem. J. 142: 575–581, 1974.

    PubMed  CAS  Google Scholar 

  11. Boumendil-Podevin, E. F., and R. A. Podevin. Isolation of baso-lateral and brush-border membranes from rabbit kidney cortex. Vesicle integrity and membrane sidedness of the baso-lateral fraction. Biochim. Biophys. Acta 735: 86–94, 1983.

    Article  Google Scholar 

  12. Brown, C. D. A., M. Bodmer, J. Biber, and H. Murer. Sodium-dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (Llc-PK1). Biochim. Biophys. Acta 769: 47 1478, 1984.

    Google Scholar 

  13. Burg, M. B., and J. Orloff. Oxygen consumption and active transport in separated renal tubules. Am. J. Physiol. 203: 327–330, 1962.

    PubMed  CAS  Google Scholar 

  14. Cameron, G., and R. Chambers. Direct evidence of function in kidney of an early human fetus. Am. J. Physiol. 123: 482–485, 1938.

    Google Scholar 

  15. Chambers, R., and E. L. Chambers. Explorations Into the Nature of the Living Cell. Cambridge, MA: Harvard Univ. Press, 1961.

    Google Scholar 

  16. Chambers, R., and R. T. Kempton. Indications of function of the chick Renal Physiology mesonephros in tissue culture with phenol red. J. Cell. Comp. Physiol. 3: 131–167, 1933.

    Article  Google Scholar 

  17. Crane, R. K. Intestinal absorption of sugars. Physiol. Rev. 40: 794825, 1960.

    Google Scholar 

  18. Crane, R. K., P. Malathi, H. Preiser, and P. Fairclough. Some characteristics of kidney Na+-dependent glucose carrier reconstituted into sonicated liposomes. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3 ): E1 — E5, 1978.

    Google Scholar 

  19. Cross, R. J., and J. V. Taggart. Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Am. J. Physiol. 161: 18 1190, 1950.

    Google Scholar 

  20. Dawson, A. G. Preparation and some properties of a suspension of fragmented tubules from rat kidney. Biochem. J. 130: 525–532, 1972.

    PubMed  CAS  Google Scholar 

  21. Deutsch, W. An improvement of Warburg’s method for cutting tissue slices for respiratory experiments (Abstract). J. Physiol. Lond. 87: 56P - 57P, 1936.

    Google Scholar 

  22. Deyrup, I. J., and R. E. Davies. The effect of temperature on the uptake of radiosulfate by rat renal tissue from radiosulfate containing solutions in vitro. J. Gen. Physiol. 44: 555–569, 1961.

    Article  PubMed  CAS  Google Scholar 

  23. Dworzak, D. L., and J. J. Grantham. Preparation of renal papillary collection duct cells for study in vitro. Kidney Int. 8: 191–194, 1975.

    Article  Google Scholar 

  24. Eveloff, J., W. Haase, and R. Kinne. Separation of renal medullary cells: isolation of cells from the thick ascending limb of Henle’s loop. J. Cell Biol. 87: 672–681, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Folkert, V. W., and D. Schlondorff. Altered prostaglandin synthesis by glomeruli from rats with unilateral ureteral ligation. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10 ): F289 — F299, 1981.

    Google Scholar 

  26. FoNG, J. S. C., and K. N. Drummond. Method for preparation of glomeruli for metabolic studies. J. Lab. Clin. Med. 71: 1034–1039, 1968.

    Google Scholar 

  27. FoNG, J. S. C., and K. N. Drummond. Glomerular metabolism. Glucose and palmitic acid oxidation in normal and nephrotoxic nephritic rats. Lab. Invest. 20: 512–515, 1969.

    Google Scholar 

  28. Forster, R. P. Use of thin kidney slices and isolated renal tubules for direct study of cellular transport kinetics. Science Wash. DC 108: 6567, 1948.

    Google Scholar 

  29. Forster, R. P., and J. H. Copenhaver, JR. Intracellular accumulation as an active process in a mammalian renal transport system in vitro. Energy dependence and competitive phenomena. Am. J. Physiol. 186: 167–171, 1956.

    PubMed  CAS  Google Scholar 

  30. Forster, R. P., and S. K. Hong. In vitro transport of dyes by isolated renal tubules of the flounder as disclosed by direct visualization. Intracellular accumulation and transcellular movement. J. Cell. Comp. Physiol. 51: 259–272, 1956.

    Google Scholar 

  31. Forster, R. P., and J. V. Taggart. Use of isolated renal tubules for the examination of metabolic processes associated with active cellular transport. J. Cell. Comp. Physiol. 36: 251–270, 1950.

    Article  CAS  Google Scholar 

  32. Fox, M., S. Thier, L. Rosenberg, and S. Segal. Ionic requirements for amino acid transport in the rat kidney cortex slices. I. Influence of extracellular ions. Biochim. Biophys. Acta 79: 167–176, 1964.

    PubMed  CAS  Google Scholar 

  33. FRÖMter, E. Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomena. Pfluegers Arch. 393: 179–189, 1982.

    Article  Google Scholar 

  34. Gaines, N., and H. Hauser. Leakiness of brush-border vesicles. Biochim. Biophys. Acta 772: 161–166, 1984.

    Article  Google Scholar 

  35. Guder, W. G., W. Wiesner, B. Stakowski, and O. Wieland. Metabolism of isolated kidney tubules. Hoppe-Seyler’s Z. Physiol. Chem. 352: 1319–1328, 1971.

    Article  CAS  Google Scholar 

  36. Gyorgy, P., W. Keller, and T. Brehme. Nierenstoffwechsel und Nierenentwicklung. Biochem. Z. 220: 356–366, 1928.

    Google Scholar 

  37. Haase, W., A. SchÄFer, H. Murer, and R. Kinne. Studies on the orientation of brush-border membrane vesicles. Biochem. J. 172: 5762, 1978.

    Google Scholar 

  38. Handler, J. S., F. M. Perkins, and J. P. Johnson. Studies of renal cell function using cell culture techniques. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F1 — F9, 1980.

    CAS  Google Scholar 

  39. Heidrich, H. G., and M. E. Dew. Homogeneous cell populations from rabbit kidney cortex. Proximal, distal tubule, and renin-active cells isolated by free-flow electrophoresis. J. Cell Biol. 74: 780–788, 1977.

    Google Scholar 

  40. Heidrich, H. G., R. Kinne, E. Kinne-Saffran, and K. Hannig. The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings. J. Cell Biol. 54: 232–245, 1972.

    Article  PubMed  CAS  Google Scholar 

  41. Henry, H. L. Regulation of the hydroxylation of 25-hydroxyvitamin D3 in vivo and in primary cultures of chick kidney cells. J. Biol. Chem. 254: 2722–2729, 1979.

    Google Scholar 

  42. Holm, J. In vitro studies on the uptake of ‘4C-labeled tetraethylammonium in mouse kidney. Acta Pharmacol. Toxicol. 31: 129–137, 1972.

    Google Scholar 

  43. Hopfer, U. Kinetic criteria for carrier-mediated transport mechanisms in membrane vesicles. Federation Proc. 40: 2480–2485, 1981.

    CAS  Google Scholar 

  44. Hopfer, U., T. D. Crowe, and B. Tandler. Purification of brush-border membrane by thiocyanate treatment. Anal. Biochem. 131: 447–452, 1983.

    Article  PubMed  CAS  Google Scholar 

  45. Hurley, A. F. Discovery: accident or design? The Florey lecture. Proc. R. Soc. Lond. B Biol. Sci. 216: 253–266, 1982.

    Article  Google Scholar 

  46. Hwang, S. M., J. Foreman, and S. Segal. Developmental pattern of cystine transport in isolated rat renal tubules. Biochim. Biophys. Acta 690: 145–153, 1982.

    Article  PubMed  CAS  Google Scholar 

  47. Johnson, P. A., and R. M. Johnstone. Alterations in membrane permeability with trypsin treatment. Can. J. Biochem. 59: 668–675, 1981.

    CAS  Google Scholar 

  48. Jones, D. P., G.-B. Sundby, K. Ormstad, and S. Orrenius. Use of isolated kidney cells for the study of drug metabolism. Biochem. Pharmacol. 28: 929–935, 1979.

    Article  PubMed  CAS  Google Scholar 

  49. Kashgarian, M. Use of monoclonal antibodies in the study of renal function. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16 ): F533 — F538, 1984.

    Google Scholar 

  50. Kenny, A. J., and S. Maroux. Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev. 62: 91–128, 1982.

    PubMed  CAS  Google Scholar 

  51. King, P. A., K. W. Beyenbach, and L. Goldstein. Taurine transport by isolated flounder renal tubules. J. Exp. Zool. 223: 103–114, 1982.

    Article  PubMed  CAS  Google Scholar 

  52. Kinne, R. Properties of the glucose transport system in the renal brush border membrane. Curr. Top. Membr. Transp. 8: 209–267, 1976.

    Article  Google Scholar 

  53. Kinter, W. B. Chlorphenol red influx and efflux: microspectrophotometry of flounder kidney tubules. Am. J. Physiol. 211: 1152–1164, 1966.

    PubMed  CAS  Google Scholar 

  54. Kinter, W. B. Structure and function of renal tubules isolated from fish kidneys. Fortschr. Zool. 23: 223–231, 1975.

    Google Scholar 

  55. Kippen, I., B. Hirayama, J. R. Klinenberg, and E. W. Wright. Effects of dibutyryl cyclic Amp on the transport of a-methyl-n-glucoside and a-aminoisobutyric acid in separated tubules and brush border membranes from rabbit kidney. Biochim. Biophys. Acta 558: 126–135, 1979.

    Article  PubMed  CAS  Google Scholar 

  56. Kleinzeller, A. The Na-independent transport of sugars in renal tubular cells. In: Na-Linked Transport of Organic Solutes, edited by E. Heinz. New York: Springer-Verlag, 1972, p. 109–115.

    Chapter  Google Scholar 

  57. Kleinzeller, A., and A. Knotkova. The steady-state efflux of Na+, K+ and Cl-from kidney cortex slices. Physiol. Bohemoslov. 16: 214–226, 1967.

    PubMed  CAS  Google Scholar 

  58. Kleinzeller, A., J. Kolinska, and I. Benes. Transport of monosaccharides in kidney cortex cells. Biochem. J. 104: 852–860, 1967.

    PubMed  CAS  Google Scholar 

  59. Kleinzeller, A., and A. KoTyk. Cations and transport of galactose in kidney-cortex slices. Biochim. Biophys. Acta 54: 367–369, 1961.

    Article  PubMed  CAS  Google Scholar 

  60. Kleinzeller, A., and E. M. McAvoy. Sugar transport across the peri-tubular face of renal cells of the flounder. J. Gen. Physiol. 62: 169–184, 1973.

    Article  PubMed  CAS  Google Scholar 

  61. Koefoed-Johnsen, V., and H. H. UssIng. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.

    Article  Google Scholar 

  62. Kragh-Hansen, V., H. Roigaard-Petersen, C. Jacobsen, and M. I. Sheikh. Tubular localization of Na+-dependent phenylalanine and glucose transport system. Biochem. J. 220: 15–24, 1984.

    Google Scholar 

  63. Krane, S. M., and R. K. Crane. The accumulation of D-galactose against a concentration gradient by slices of rabbit kidney cortex. J. Biol. Chem. 234: 211–219, 1959.

    PubMed  CAS  Google Scholar 

  64. Krebs, H. A. Untersuchungen über den Stoffwechsel der Aminosäuren im Tierkorper. Hoppe Seyler’s Z. Physiol. Chem. 217: 191–227, 1933.

    Article  CAS  Google Scholar 

  65. Krebs, H. A. The synthesis of glutamine from glutamic acid and ammonia and the enzyme hydrolysis of glutamine in animal tissues. Biochem. J. 291: 1951–1969, 1935.

    Google Scholar 

  66. Krebs, H. A. Body size and tissue respiration. Biochim. Biophys. Acta 4: 249–269, 1950.

    Article  PubMed  CAS  Google Scholar 

  67. Krebs, H. A. Otto Warburg: Cell Physiologist, Biochemist and Eccentric. Oxford, UK: Clarendon, 1981.

    Google Scholar 

  68. Krebs, H. A., D. A. H. Bennett, P. DE Gasquet, and T. Yoshida. Renal gluconeogenesis. The effect of diet in the gluconeogenic capacity of rat-kidney-cortex slices. Biochem. J. 86: 22–27, 1963.

    Google Scholar 

  69. Krebs, H. A., N. W. Cornell, P. Lund, and R. Hems. Isolated liver cells as experimental material. In: Regulation of Hepatic Metabolism,edited by F. Lundquist and N. Tygstrup. Copenhagen: Munksgaard, 1974, p. 726–750. (Alfred Benzon Symp. 6.)

    Google Scholar 

  70. Krebs, H. A., P. Lund, and M. Edwards. Criteria of metabolic competence of isolated hepatocytes. In: Cell Populations (Methodological Surveys in Biochemistry), edited by E. Reid. New York: Wiley, 1979, p. 1–6.

    Google Scholar 

  71. Leaf, A. On the mechanism of fluid exchange of tissues in vitro. Biochem. J. 62: 241–248, 1956.

    PubMed  CAS  Google Scholar 

  72. Lee, J. B., V. K. Vance, and G. F. Cahill, JR. Metabolism of C14-labeled substrates by rabbit kidney cortex and medulla. Am. J. Physiol. 203: 27–36, 1962.

    PubMed  CAS  Google Scholar 

  73. Leuthardt, I. Untersuchungen über die Diffusion in Gewebsschnitten. Biochem. Z. 299: 281–306, 1938.

    Google Scholar 

  74. Liang, C. T., J. Barnes,. L. Cheng, R. Balakir, and B. Sacktor. Effects of 1,25-(OH)2D3 administered in vivo on phosphate uptake by isolated chick renal cells. Am. J. Physiol. 242 (Cell Physiol. 11 ): C312 - C318, 1982.

    Google Scholar 

  75. Lowenstein, L., K. Hummeler, I. Smith, and S. Segal. The effect of storage at 4°C on amino acid transport by rat kidney cortex slices. Biochim. Biophys. Acta 150: 416–423, 1968.

    Article  PubMed  CAS  Google Scholar 

  76. Lowry, O. H., and J. V. Passonneau. A Flexible System of Enzymatic Analysis. New York: Academic, 1972.

    Google Scholar 

  77. Maack, T., and W. B. Kinter. Transport of protein by flounder kidney tubules during long-term incubation. Am. J. Physiol. 216: 1034–1043, 1969.

    CAS  Google Scholar 

  78. Mamelok, R. D., D. R. Macrae, L. Z. Benet, and S. B. Prusiner. Membrane populations of bovine choroid plexus: separation by density gradient centrifugation in modified colloidal silica. J. Neurochem. 37: 768–774, 1981.

    Article  PubMed  CAS  Google Scholar 

  79. Martel-Pelletier, J., D. Guerette, and M. Bergeron. Morphological changes during incubation of renal slices. Lab. Invest. 36: 509–518, 1977.

    Google Scholar 

  80. Miller, D., and R. K. Crane. The digestive function of epithelium of the small intestine. Biochim. Biophys. Acta 52: 293–298, 1961.

    Article  PubMed  CAS  Google Scholar 

  81. Moran, A., J. S. Handler, and R. J. Turner. Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line. Am. J. Physiol. 243 (Cell Physiol. 12 ): C293 - C298, 1982.

    Google Scholar 

  82. Mudge, G. H. Studies on potassium accumulation by rabbit kidney slices: effect of metabolic activity. Am. J. Physiol. 165: 113–127, 1951.

    PubMed  CAS  Google Scholar 

  83. Mullin, J. M., L. Fluk, and A. Kleinzeller Basal-lateral transport and transcellular flux of methyl-a-D-glucoside across Llc-Pki renal epithelial cells. Biochim. Biophys. Acta. 885: 233–239, 1986.

    Article  PubMed  CAS  Google Scholar 

  84. Mullin, J. M, L. Fluk, and T. Tchao. Mitosis in domes of renal epithelial (Llc-PK1) cell culture. J. Mol. Physiol. 8: 813–828, 1985.

    Google Scholar 

  85. Mullin, J. M., F. Weibel, L. Diamond, and A. Kleinzeller Sugar transport in the Llc-Pki renal epithelial cell line: similarity to mammalian kidney and the influence of cell density. J. Cell. Physiol. 104: 375–389, 1980.

    Article  PubMed  CAS  Google Scholar 

  86. Murer, H., and R. Kinne. The use of isolated membrane vesicles to study epithelial transport processes. J. Membr. Biol. 55: 81–95, 1980.

    Article  PubMed  CAS  Google Scholar 

  87. Murthy, L., and E. C. Foulkes Movement of solutes across luminal cell membranes in kidney tubules of the rabbit. Nature Lond. 213: 180–181, 1967.

    Article  PubMed  CAS  Google Scholar 

  88. Nord, E. P., S. H. Wright, I. Kippen, and E. M. Wright. Specificity of the Na+-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes. J. Membr. Biol. 72: 213–221, 1983.

    Article  PubMed  CAS  Google Scholar 

  89. Ojakian, G. K., and D. A. Herzlinger. Analysis of epithelial cell surface 1 161 polarity with monoclonal antibodies. Federation Proc. 43: 2208–2216, 1984.

    CAS  Google Scholar 

  90. Okamoto, Y. Über Anaerobiose von Tumorgewebe. Biochem. Z. 160: 52–651925.

    Google Scholar 

  91. Platts, M. M., and G. H. Mudge. Accumulation of uric acid by slices of kidney cortex. Am. J. Physiol. 200: 387–392, 1961.

    Google Scholar 

  92. Podevin, R. A., E. F. Boumendil-Podevin, and C. Priol. Concentrative Pah transport by rabbit kidney slices in the absence of metabolic energy. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4 ): F278 — F285, 1978.

    Google Scholar 

  93. Preuss, H. G., S. T. Eastman, O. Vavatsi-Manos, K. Baird, and D. M. RoxE. The regulation of renal ammoniagenesis in the rat by extracellular factors. I. The combined effects of acidosis and physiologic fuels. Metabolism 27: 1626–1638, 1978.

    Article  PubMed  CAS  Google Scholar 

  94. Rabito, C. A. Phosphate uptake by a kidney cell line (Llc-PK,). Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14 ): F22 — F31, 1983.

    Google Scholar 

  95. Renfro, J. L. Calcium transport across peritubular surface of the marine teleost renal tubule. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3 ): F522 — F531, 1978.

    Google Scholar 

  96. Renfro, J. L., and J. B. Pritchard. Htdependent sulfate secretion in the marine teleost renal tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12 ): F150 — F159, 1982.

    Google Scholar 

  97. RosE, R. C., J. Bianchi, and S. A. Schuette. Effective use of renal cortical slices in transport and metabolic studies. Biochim. Biophys. Acta 821: 431–436, 1985.

    Google Scholar 

  98. Rosenberg, L. E., A. Blair, and S. Segal. The transport of amino acids in rat kidney cortex slices. Biochim. Biophys. Acta 54: 479–488, 1961.

    Article  PubMed  CAS  Google Scholar 

  99. Rozen, R., and C. R. Scriver. Renal transport of taurine adapts to perturbed taurine homeostasis. Proc. Natl. Acad. Sci. Usa 79: 2101 2105, 1982.

    Google Scholar 

  100. Rucc, E. L., and N. L. Simmons. Control of cultured epithelial (Mdck) cell transport function: identification of a ß-adrenoreceptor coupled to adenylate cyclase. Q. J. Exp. Physiol. 69: 339–353, 1984.

    Google Scholar 

  101. Saler, M. H. Application of the microbiological approach to the study of passive monovalent salt transport in a kidney epithelial cell line, Mdck. In: Tissue Culture of Epithelial Cells, edited by M. Taub. New York: Plenum, 1985, p. 51–66.

    Google Scholar 

  102. Sakhrani, L. M., B. Badie-Dezfooly, W. Trizna, N. Mikhail, A. G. Lowe, M. Taub, and L. G. Fine. Transport and metabolism of glucose by renal proximal tubular cells in primary culture. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15 ): F757 — F764, 1984.

    Google Scholar 

  103. Schmidt, U., and U. C. Dubach. Differential enzymatic behaviour of single proximal segments of the superficial and juxtamedullary nephron. Z. Gesamte Exp. Med. 151: 93–102, 1969.

    Google Scholar 

  104. Scholer, D. W., and I. S. Edelman. Isolation of rat kidney cortical tubules enriched in proximal and distal segments. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6 ): F350 — F359, 1979.

    Google Scholar 

  105. Shannon, J. A. Renal tubular excretion. Physiol. Rev. 19: 63–93, 1939.

    Google Scholar 

  106. Simmons, N. L., C. D. A. Brown, and E. L. Rugc. The action of epinephrine on Madin-Darby canine kidney cells. Federation Proc. 43: 2225–2229, 1984.

    CAS  Google Scholar 

  107. Smith, W. L., and A. Garcia-Perez. Immunodissection: use of monoclonal antibodies to isolate specific types of renal cells. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17 ): F1 — F7, 1985.

    Google Scholar 

  108. Tanner, C., D. A. Frambach, and D. S. Misfeldt. Biophysics of domes formed by the renal cell line Madin-Darby canine kidney. Federation Proc. 43: 2217–2220, 1984.

    CAS  Google Scholar 

  109. Taub, M. (editor). Tissue Culture of Epithelial Cells. New York: Plenum, 1985.

    Google Scholar 

  110. Turner, R. J., and A. Moran. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F406 — F414, 1982.

    PubMed  CAS  Google Scholar 

  111. Ullrich, K. J., G. Rumrich, and S. KLöss. Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pfluegers Arch. 351: 35–48, 1974.

    Article  CAS  Google Scholar 

  112. Vinay, P., A. GouGoux, and G. Lemieux. Isolation of a pure suspension of rat proximal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10 ): F403 — F411, 1981.

    Google Scholar 

  113. Warburg, O. Versuche am überlebendem Carcinomgewebe. Biochem. Z. 142: 317–333, 1923.

    Google Scholar 

  114. Warburg, O., K. Gawehn, and A.-W. Geissler. Stoffwechsel von embryonalen Zellen und von Krebszellen. Z. Naturforsch. 11b: 657–662, 1956.

    Google Scholar 

  115. Wedeen, R. P., and B. Weiner. The distribution of p-aminohippuric acid in rat kidney slices. I. Tubular localization. Kidney Int. 3: 205213, 1973.

    Google Scholar 

  116. Wedeen, R. P., and B. Weiner. The distribution of p-aminohippuric acid in rat kidney slices. II. Depth of uptake. Kidney Int. 3: 214–221, 1973.

    Article  PubMed  CAS  Google Scholar 

  117. Weidemann, M. J., and H. A. Krebs. The fuel of respiration of rat kidney cortex. Biochem. J. 112: 149–166, 1969.

    PubMed  CAS  Google Scholar 

  118. Wilson, T. H. Ionic permeability and osmotic swelling of cells. Science Wash. DC 120: 104–105, 1954.

    Article  CAS  Google Scholar 

  119. Woodhall, P. B., C. C. Tisher, C. A. Simonton, and R. R. Robinson. Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules. J. Clin. Invest. 61: 1320–1329, 1978.

    Article  PubMed  CAS  Google Scholar 

  120. Wright, S. H., I. Kippen, J. R. Klinenberg, and E. M. Wright. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders. J. Membr. Biol. 57: 73–82, 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 American Physiological Society

About this chapter

Cite this chapter

Kleinzeller, A. (1987). From Renal Tissue Slices to Membrane Vesicles. In: Gottschalk, C.W., Berliner, R.W., Giebisch, G.H. (eds) Renal Physiology. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7545-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7545-3_5

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7545-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics