Animal Stress pp 297-315 | Cite as

Definition of Laboratory Animal Environmental Conditions

  • Emerson L. Besch


The health and well-being of animals have generated much interest in recent years, particularly in association with animals used in teaching and research. Consequently, guidelines for the care and use of laboratory animals have been established (33). Animal welfare has also been the subject of both federal legislation (2, 3) and regulation (4).


Laboratory Animal Retinal Degeneration Animal Room Laboratory Animal Resource Threshold Limit Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, K. V., F. P. Coyle, and W. K. O’Steen. Retinal degeneration produced by low intensity light. Exp. Neurol. 35: 233–238, 1972.PubMedCrossRefGoogle Scholar
  2. 2.
    Anonymous. Laboratory Animal Welfare Act of 1966. Public law 89–544. Fed. Regist. 32: 3270–3282, 1967.Google Scholar
  3. 3.
    Anonymous. Animal Welfare Act of 1970. Public law 91–579. Fed. Regist. 36: 2047220480, 1970.Google Scholar
  4. 4.
    Anonymous. Title 9-Animals and animal products. Subchapt. A-animal welfare. Pts. 1–3. Code of Federal Regulations, February, 1976.Google Scholar
  5. 5.
    Anthony, A. Criteria for acoustics in animal housing. Lab. Anim. Care 13: 340–350, 1963.Google Scholar
  6. 6.
    Anthony, A., and S. Babcock. Effects of intense noise on adrenal and plasma cholesterol of mice. Experientia 14: 104–105, 1958.PubMedCrossRefGoogle Scholar
  7. 7.
    Aschoff, J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp. Quant. Biol. 25: 11–28, 1960.CrossRefGoogle Scholar
  8. 8.
    Attah, M. Y., and E. L. Besch. Estrous cycle variations of food and water intake in rats in the heat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 874–877, 1977.Google Scholar
  9. 9.
    Baetjer, A. M. Role of environmental temperature and humidity in susceptibility to disease. Arch. Environ. Health 16: 565–570, 1968.Google Scholar
  10. 10.
    Barrow, C. S., and D. E. Dodd. Ammonia production in inhalation chambers and its relevance to chlorine inhalation studies. Toxicol. Appl. Pharmacol. 49: 89–95, 1979.PubMedCrossRefGoogle Scholar
  11. 11.
    Bellhorn, R. W. Lighting in the animal environment. Lab. Anim. Sci. 30: 440–450, 1980.Google Scholar
  12. 12.
    Benedict, F. G. Vital Energetics: A Study in Comparative Basal Metabolism. Washington, DC: Carnegie Inst. of Washington, 1938, p. 64–65.Google Scholar
  13. 13.
    Besch, E. L. Activity responses to altered photoperiods. Aerosp. Med. 40: 1111 1114, 1969.Google Scholar
  14. 14.
    Besch, E. L. Influence of photoperiod on food and water intake in rats. Aerosp. Med. 41: 1145–1148, 1970.Google Scholar
  15. 15.
    Besch, E. L. Animal cage room dry-bulb and dew-point temperature differentials. ASHRAE Trans. 81: 549–558, 1975.Google Scholar
  16. 16.
    Besch, E. L. Environmental quality within animal facilities. Lab. Anim. Sci. 30: 385–406, 1980.Google Scholar
  17. 17.
    Besch, E. L., and J. E. Woods. Heat dissipation biorhythms of laboratory animals. Lab. Anim. Sci. 27: 54–59, 1977.Google Scholar
  18. 18.
    Blackmore, D. Individual differences in critical temperatures among rats at various ages. J. Appl. Physiol. 29: 556–559, 1970.Google Scholar
  19. 19.
    Borg, E., and A. R. Moller. Noise and blood pressure: effect of lifelong exposure in the rat. Acta Physiol. Scand. 103: 340–342, 1978.Google Scholar
  20. 20.
    Brewer, N. R. Estimating heat produced by laboratory animals. Heat./Piping/Air Cond. 36: 139–141, 1964.Google Scholar
  21. 21.
    Broderson, J. R., J. R. Lindsey, and J. E. Crawford. The role of environmental ammonia in respiratory mycoplasmosis of rats. Am. J. Pathol. 85: 115–130, 1976.PubMedGoogle Scholar
  22. 22.
    Bronson, F. H., and V. M. Chapman. Adrenal-eostrus relationships in grouped or isolated female mice. Nature London 218: 483–484, 1968.PubMedCrossRefGoogle Scholar
  23. 23.
    Bunning, E. The Physiological Clock (2nd ed. revised). New York: Springer-Verlag, 1967, p. 126–129.Google Scholar
  24. 24.
    Carnahan, R. B. A. Keratoconjunctivitis in broiler chicks. Vet. Rec. 70: 35–37, 1958.Google Scholar
  25. 25.
    Cayen, M. N., M. L. Givner, and M. Kraml. Effect of diurnal rhythm and food withdrawal on serum lipid levels in the rat. Experientia 38: 502–503, 1972.CrossRefGoogle Scholar
  26. 26.
    Chance, M. R. A. Factors influencing the toxicity of sympathomimetic amines to solitary mice. J. Pharmacol. Exp. Ther. 89: 289–296, 1947.Google Scholar
  27. 27.
    Chen, K. K., R. C. Anderson, F. A. Steldt, and C. A. Mills. Environmental temperature and drug action in mice. J. Pharmacol. Exp. Ther. 79: 127–132, 1943.Google Scholar
  28. 28.
    Chou, B. J., and E. L. Besch. Feeding biorhythm alterations in heat-stressed rats. Aerosp. Med. 45: 535–539, 1974.Google Scholar
  29. 29.
    Chowers, I., R. A. Siegel, N. Conforti, and L. Baranes. The effects of acclimation to alternating environmental temperature on metabolic and endocrine responses in guinea pigs, during acute heat and cold exposure. Int. J. Biometeorol. 21: 64–74, 1977.CrossRefGoogle Scholar
  30. 30.
    Cinti, D. L., M. A. Lemelin, and J. Christian. Induction of liver microsomal mixed-function oxidases by volatile hydrocarbons. Biochem. Pharmacol. 25: 100–103, 1976.PubMedCrossRefGoogle Scholar
  31. 31.
    Clark, J. D. Regulation of animal use: voluntary and involuntary. J. Vet. Med. Educ. 6: 86–90, 1979.Google Scholar
  32. 32.
    Clarkson, D. P., C. L. Schatte, and J. P. Jordan. Thermal neutral temperature of rats in helium-oxygen, argon-oxygen, and air. Am. J. Physiol. 222: 1494–1498, 1972.Google Scholar
  33. 33.
    Committee on Care and Use of Laboratory Animals. Institute of Laboratory Animal Resources, National Research Council. Guide for the Care and Use of Laboratory Animals. Washington, DC: Natl. Acad. Sci., 1978, 70 p.Google Scholar
  34. 34.
    Committee on Cats. Institute of Laboratory Animal Resources, National Research Council. Laboratory Animal Management—Cats. Washington, DC: Natl. Acad. Sci., 1978, 20 p.Google Scholar
  35. 35.
    Committee on Nonhuman Primates, Subcommittee on Care and Use. Institute of Laboratory Animal Resources, National Research Council. Laboratory Animal Management—Nonhuman Primates. Washington, DC: Natl. Acad. Sci., 1980, 44 p.Google Scholar
  36. 36.
    Committee on Rodents. Institute of Laboratory Animal Resources, National Research Council. Laboratory Animal Management—Rodents. Washington, DC: Natl. Acad. Sci., 1977, 12 p.Google Scholar
  37. 37.
    Committee on Standards. Institute of Laboratory Animal Resources, National Research Council. Standards for the Breeding, Care and Management of Laboratory Rabbits. Washington, DC: Natl. Acad. Sci., 1967, 12 p.Google Scholar
  38. 38.
    Committee on Standards, Subcommittee on Avian Standards. Institute of Laboratory Animal Resources, National Research Council. Standards and Guidelines for the Breeding, Care and Management of Laboratory Animals—Chickens. Washington, DC: Natl. Acad. Sci., 1966, 36 p. (Publ. 1464.)Google Scholar
  39. 39.
    Committee on Standards, Subcommittee on Dog and Cat Standards. Institute of Laboratory Animal Resources, National Research Council. Standards and Guidelines for the Breeding, Care and Management of Laboratory Animals—Dogs. Washington, DC: Natl. Acad. Sci., 1973, 48 p.Google Scholar
  40. 40.
    Committee on Standards, Subcommittee on Rodent Standards. Institute of Laboratory Animal Resources, National Research Council. Standards and Guidelines for the Breeding, Care and Management of Laboratory Animals—Rodents. Washington, DC: Natl. Acad. Sci., 1969, 52 p.Google Scholar
  41. 41.
    Conney, A. H., and J. J. Burns. Metabolic interactions among environmental chemicals and drugs. Science 178: 576–586, 1972.PubMedCrossRefGoogle Scholar
  42. 42.
    Davis, D. E. Social behavior in a laboratory environment. In: Laboratory Animal Housing. Washington, DC: Natl. Acad. Sci., Inst. Lab. Anim. Resources, 1978, p. 4463.Google Scholar
  43. 43.
    Evans, E. S., A. N. Contopoulos, and M. E. Simpson. Hormonal factors influencing calorigenesis. Endocrinology 60: 403–419, 1957.PubMedCrossRefGoogle Scholar
  44. 44.
    Fioretti, M. C., C. Riccardi, E. Menconi, and L. Martini. Control of the body temperature of the rat. Life Sci. 14: 2111–2119, 1974.PubMedCrossRefGoogle Scholar
  45. 45.
    Flynn, R. J. Studies on the aetiology of ringtail of rats. Proc. Anim. Care Panel 9: 155–160, 1959.Google Scholar
  46. 46.
    Flynn, R. J. A new cage cover as an aid to laboratory rodent disease control. Proc. Soc. Exp. Biol. Med. 129: 714–717, 1968.Google Scholar
  47. 47.
    Folk, G. E. Textbook of Environmental Physiology ( 2nd ed. ). Philadelphia, PA: Lea & Febiger, 1974, 465 p.Google Scholar
  48. 48.
    Forster, R. E., II, and T. B. Ferguson. Relationship between hypothalamic temperature and thermoregulatory effectors in unanesthetized cat. Am. J. Physiol. 169: 255–269, 1952.Google Scholar
  49. 49.
    Geber, W. F., T. A. Anderson, and B. van Dyne. Physiologic responses of the albino rat to chronic noise. Arch. Environ. Health 12: 751–754, 1966.PubMedGoogle Scholar
  50. 50.
    Gelineo, S. Organ systems in adaptation: the temperature regulating system. In: Handbook of Physiology. Adaptation to the Environment, edited by D. B. Dill, E. F. Adolph, and C. G. Wilber. Washington, DC: Am. Physiol. Soc., 1964, sect. 4, chapt. 15, p. 259–282.Google Scholar
  51. 51.
    Gorton, R. L., J. E. Woods, and E. L. Besch. System load characteristics and estimation of animal heat loads for laboratory animals. ASHRAE Trans. 82: 107112, 1976.Google Scholar
  52. 52.
    Guha, D., E. F. Williams, Y. Nimitkitpaisan, S. Bose, S. N. Dutta, and S. N. Pradhan. Effect of sound stimulus on gastric secretion and plasma corticosterone levels in rats. Res. Commun. Chem. Pathol. Pharmacol. 13: 273–281, 1976.Google Scholar
  53. 53.
    Gwosdow-Cohen, A. Influence of Preconditioning on Physiological Responses to Changing Thermal Environments. Gainesville: Univ. of Florida, 1980, 41 p. M.S. thesis.Google Scholar
  54. 54.
    Gwosdow-Cohen, A., C. L. Chen, and E. L. Besch. Radioimmunoassay (RIA) of serum corticosterone in rats. Proc. Soc. Exp. Biol. Med. 170: 29–34, 1982.Google Scholar
  55. 55.
    Hammel, H. T., C. H. Wyndham, and J. D. Hardy. Heat production and heat loss in the dog at 8–36°C environmental temperature. Am. J. Physiol. 194: 99–108, 1958.PubMedGoogle Scholar
  56. 56.
    Hastings, J. W., and M. Menaker. Physiological and biochemical aspects of circadian rhythms. Federation Proc. 35: 2325–2357, 1976.Google Scholar
  57. 57.
    Haus, E., and F. Halberg. 24-Hour rhythm in susceptibility of C mice to a toxic dose of ethanol. J. Appl. Physiol. 14: 878–880, 1959.Google Scholar
  58. 58.
    Henriques, V., and C. Hansen. Über Eiweissynthese im Tierkörper. Hoppe-Seyler’s Z. Physiol. Chem. 43: 418–446, 1904.Google Scholar
  59. 59.
    Herrington, L. P. The heat regulation of small laboratory animals at various environmental temperatures. Am. J. Physiol. 129: 123–139, 1940.Google Scholar
  60. 60.
    Jensen, M. M., and A. F. Rasmussen. Stress and susceptibility to viral infection. J. Immunol. 90: 17–20, 1963.PubMedGoogle Scholar
  61. 61.
    Johnson, G. S., and R. S. Elizondo. Thermoregulation in Macaca mulatta: a thermal balance study. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 268–277, 1979.Google Scholar
  62. 62.
    Joni, A., A. Bianchetti, and P. E. Prestini. Effect of essential oils on drug metabolism. Biochem. Pharmacol. 18: 2081–2085, 1969.CrossRefGoogle Scholar
  63. 63.
    Keast, D., and M. F. Coales. Lymphocytopenia induced in a strain of laboratory mice by agents commonly used in treatment of ectoparasites. Aust. J. Exp. Biol. Med. Sci. 45: 645–650, 1967.Google Scholar
  64. 64.
    Kleiber, M. The Fire of Life. New York: Wiley, 1961, 454 p.Google Scholar
  65. 65.
    Kling, H. F., and C. L. Quarles. Effect of atmospheric ammonia and the stress of infectious bronchitis vaccination on leghorn males. Poult. Sci. 53: 1161–1167, 1974.PubMedCrossRefGoogle Scholar
  66. 66.
    Kruckenberg, S. M., E. L. Besch, and J. E. Woods. Air exchange rates and ammonia in animal rooms. Am. Assoc. Lab. Anim. Sci. Publ. 74–3: 76, 1974.Google Scholar
  67. 67.
    Kumar, M. S. A., C. L. Chen, E. L. Besch, J. W. Simpkins, and K. S. Estes. Altered hypothalamic dopamine depletion rate and LHRH content in noncyclic hamsters. Brain Res. Bull. 8: 33–36, 1982.PubMedCrossRefGoogle Scholar
  68. 68.
    Lai, Y. L., R. O. Jacoby, and A. M. Jonas. Age-related and light-associated retinal changes in Fischer rats. Invest. Ophthalmol. Vis. Sci. 17: 634–638, 1978.Google Scholar
  69. 69.
    Lang, C. M., and E. S. Vesell. Environmental and genetic factors affecting laboratory animals: impact on biomedical research. Federation Proc. 35: 1123–1124, 1976.Google Scholar
  70. 70.
    Lee, R. C. Basal metabolism of the adult rabbit and prerequisites for its measurement. J. Nutr. 18: 473–488, 1939.Google Scholar
  71. 71.
    Lindsey, J. R., M. W. Conner, and H. J. Baker. Physical, chemical and microbial factors affecting biologic response. In: Laboratory Animal Housing. Washington, DC: Natl. Acad. Sci., Inst. Lab. Anim. Resources, 1978, p. 31–43.Google Scholar
  72. 72.
    Mach, E., and W. Lane-Petter. Animal-house design. In: The UFAW Handbook of the Care and Management of Laboratory Animals ( 3rd ed. ). Edinburgh: Livingstone, 1966, p. 28–41.Google Scholar
  73. 73.
    Mainland, D., and L. Herrera. Independent individuals. In: Methods in Medical Research, edited by J. M. Steel. Chicago, IL: Year Book, 1954, p. 184–190.Google Scholar
  74. 74.
    Meltzer, A., G. Goodman, and J. Fistool. Thermoneutral zone and resting metabolic rate of growing white leghorn-type chickens. Br. Poult. Sci. 23: 383–391, 1982.CrossRefGoogle Scholar
  75. 75.
    Munkelt, F. H. Air purification and deodorization by use of activated carbon. Refrig. Eng. 56: 222–229, 1948.Google Scholar
  76. 76.
    Murakami, H. Differences between internal and external environments of the mouse cage. Lab. Anim. Sci. 21: 680–684, 1971.Google Scholar
  77. 77.
    Murakami, H., and Y. Watanabe. Rhythm of water intake of mice in the daytime under continuous darkness. J. Comp. Physiol. Psycho’. 85: 272–276, 1973.CrossRefGoogle Scholar
  78. 78.
    Nayfield, K. C., and E. L. Besch. Comparative responses of rabbits and rats to elevated noise. Lab. Anim. Sci. 31: 386–390, 1981.PubMedGoogle Scholar
  79. 79.
    Nelson, J. B. The problems of disease and quality in laboratory animals. J. Med. Educ. 35: 34–43, 1960.Google Scholar
  80. 80.
    Newberne, P. M., and J. G. Fox. Chemicals and toxins in the animal facility. In: Laboratory Animal Housing. Washington, DC: Natl. Acad. Sci., Inst. Lab. Anim. Resources, 1978, p. 118–138.Google Scholar
  81. 81.
    O’Steen, W. K. Retinal and optic nerve serotonin and retinal degeneration as influenced by photoperiod. Exp. Neurol. 27: 194–205, 1970.PubMedCrossRefGoogle Scholar
  82. 82.
    Parkes, A. S., and H. M. Bruce. Olfactory stimuli in mammalian reproduction. Science 134: 1049–1054, 1961.PubMedCrossRefGoogle Scholar
  83. 83.
    Peterson, E. A. Noise and laboratory animals. Lab. Anim. Sci. 30: 422–439, 1980.Google Scholar
  84. 84.
    Pfaff, J., and M. Stecker. Loudness level and frequency content of noise in the animal house. Lab. Anim. 10: 111–117, 1976.PubMedCrossRefGoogle Scholar
  85. 85.
    Poole, S., and J. D. Stephenson. Body temperature regulation and thermoneutrality. Q. J. Exp. Physiol. 62: 143–149, 1977.Google Scholar
  86. 86.
    Post, C. D., and J. P. Kaltenbach. The effect of corncob bedding on reproductivity and leucine incorporation in mice. Lab. Anim. Care 19: 46–49, 1969.Google Scholar
  87. 87.
    Prosser, C. L. (editor). Comparative Animal Physiology: Environmental Physiology (3rd ed.). Philadelphia, PA: Saunders, 1973, vol. 1, 456 p.Google Scholar
  88. 88.
    Reyniers, J. A. Housing laboratory animals. Mod. Hosp. 58: 64–67, 1942.Google Scholar
  89. 89.
    Rohles, F. H. The ecosystem complex: a new approach in specifying the man-environment relationship. J. Environ. Syst. 1: 321–328, 1971.Google Scholar
  90. 90.
    Runkle, R. S. Laboratory animal housing. II. Am. Inst. Arch. J. 41: 77–80, 1964.Google Scholar
  91. 91.
    Sato, S., S. Shoya, and H. Kobayashi. Effect of ammonia on Mycoplasme gallisepticum infection in chickens. Natl. Inst. Anim. Health 13: 45–53, 1973.Google Scholar
  92. 92.
    Sattler, K. M. Olfactory and auditory stress on mice (Mus musculus). Psychonom. Sci. 29: 294–296, 1972.Google Scholar
  93. 93.
    Selye, H. The Physiology and Pathology of Exposure to Stress. Montreal: Acta, 1950, 822 p.Google Scholar
  94. 94.
    Serrano, L. J. Carbon dioxide and ammonia in mouse cages: effect of cage covers, population and activity. Lab. Anim. Sci. 21: 75–85, 1971.PubMedGoogle Scholar
  95. 95.
    Sierens, S. E. The Design, Construction and Calibration of an Acoustical Reverberation Chamber for Measuring the Sound Power Levels of Laboratory Animals. Gainesville: Univ. of Florida, 1976, 127 p. M.S. thesis.Google Scholar
  96. 96.
    Silverman, L., J. W. Whittenberger, and J. Muller. Physiological response of man to ammonia in low concentrations. J. Ind. Hyg. Toxicol. 31: 74–78, 1949.PubMedGoogle Scholar
  97. 97.
    Spalding, J. F., R. F. Archuleta, and L. M. Holland. Influence of the visible color spectrum on activity in mice. Lab. Anim. Care 19: 50–54, 1969.Google Scholar
  98. 98.
    Stitt, J. T., and J. D. Hardy. Thermoregulation in the squirrel monkey (Saimiri sciureus). J. Appl. Physiol. 31: 48–54, 1971.Google Scholar
  99. 99.
    Stötzer, V. H., I. Weisse, F. Knappen, and R. Seitz. Die Retina-Degeneration der Ratte. Arzneim. Forsch. 20: 811–817, 1970.Google Scholar
  100. 100.
    Stuhlman, R. A., and J. E. Wagner. Ringtail in Mystromys albicaudatus: a case report. Lab. Anim. Sci. 21: 585–587, 1971.PubMedGoogle Scholar
  101. 101.
    Sugano, Y. Seasonal changes in heat balance of dogs acclimatized to outdoor climate. Jpn. J. Physiol. 31: 465–475, 1981.Google Scholar
  102. 102.
    Szelenyi, Z., and R. E. Moore. Thermal neutrality and the effect of intraventricular 5-hydroxytryptamine on oxygen consumption in the conscious neonatal rabbit. Acta Physiol. Acad. Sci. Hung. 55: 135–147, 1980.Google Scholar
  103. 103.
    Vesell, E. S., C. M. Lang, W. J. White, G. T. Passananti, R. N. Hill, T. L. Clemens, D. L. Liu, and W. D. Johnson. Environmental and genetic factors affecting response of laboratory animals to drugs. Federation Proc. 35: 1125–1132, 1976.Google Scholar
  104. 104.
    Wasserman, M., D. Wasserman, Z. Gershon, and L. Zellermayer. Effects of organo-chlorine insecticides on body defenses. Ann. NY Acad. Sci. 160: 393–401, 1969.CrossRefGoogle Scholar
  105. 105.
    Weihe, W. H. The significance of the physical environment for the health and state of adaptation of laboratory animals. In: Defining the Laboratory Animal. Washington, DC: Natl. Acad. Sci., 1971, p. 353–378.Google Scholar
  106. 106.
    Weihe, W. H. The effects on animals of change in ambient temperature and humidity. In: Laboratory Animal Handbooks. Control of the Animal House Environment, edited by T. McSheehy. London: Lab. Anim., 1976, p. 41–50.Google Scholar
  107. 107.
    Weisse, I., H. Stotzer, and R. Seitz. Age and light-dependent changes in the rat eye. Virchows Arch. A 362: 145–156, 1974.Google Scholar
  108. 108.
    Woods, J. E. Influence of room air distribution on animal cage environments. ASHRAE Trans. 81: 559–571, 1975.Google Scholar
  109. 109.
    Woods, J. E. Interactions between primary (cage) and secondary (room) enclosures. In: Laboratory Animal Housing. Washington, DC: Natl. Acad. Sci., Inst. Lab. Anim. Resources, 1978, p. 65–83.Google Scholar
  110. 110.
    Woods, J. E., and E. L. Besch. Influence of group size on heat dissipation from dogs in a controlled environment. Lab. Anim. Sci. 24: 72–78, 1974.Google Scholar
  111. 111.
    Woods, J. E., R. G. Nevins, and E. L. Besch. Analysis of thermal and ventilation requirements for laboratory animal cage environments. ASHRAE Trans. 81: 45–66, 1975.Google Scholar
  112. 112.
    Woods, J. E., R. G. Nevins, and E. L. Besch. Experimental evaluation of heat and moisture transfer in metal dog cage environments. Lab. Anim. Sci. 25: 425–433, 1975.PubMedGoogle Scholar
  113. 113.
    Yaglou, C. P., E. C. Riley, and D. I. Coggins. Ventilation requirements. ASHVE Trans. 42: 133–162, 1936.Google Scholar
  114. 114.
    Yamauchi, C., S. Fujita, T. Obara, and T. Ueda. Effects of room temperature on reproduction, body and organ weights, food and water intake and hematology in rats. Lab. Anim. Sci. 31: 251–258, 1981.PubMedGoogle Scholar

Copyright information

© American Physiological Society 1985

Authors and Affiliations

  • Emerson L. Besch
    • 1
  1. 1.Department of Physiological Sciences, College of Veterinary MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations