Advertisement

The Autonomic Nervous System

  • Charles M. Tipton

Abstract

It is a daunting task to present in a cohesive chapter a historical perspective on the functions of the autonomic nervous system during exercise by normal and physically trained subjects. The multiplicity of systems regulated by the autonomic nervous system is summarized as follows by Hamill (76, p. 12):

The autonomic nervous system (ANS) is structurally and functionally positioned to interface between the internal and external milieu, coordinating bodily functions to insure normal homeostasis (cardiovascular control, thermal regulation, gastrointestinal motility, urinary and bowel excretory functions, reproduction, and normal metabolic and endocrine physiology), and adaptive responses to stress (fight or flight response).

Keywords

Autonomic Nervous System Sympathetic Nervous System Endurance Training Coronary Blood Flow Sympathetic Nerve Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlquist R. P. A study of the adrenotropic receptors. Am. J. Physiol. 154: 586–600, 1948.Google Scholar
  2. 2.
    Ahlquist R. P. Effects of the autonomic drugs on the circulatory system. In: Handbook of Physiology, Section 2: Circulation, Vol. III, edited by W. F. Hamilton and P. Dows. Washington, DC: American Physiological Society, 1965, pp. 2457–2475.Google Scholar
  3. 3.
    Alam M. and E H. Smirk. Observations in man upon a blood pressor raising reflex arising from the voluntary muscles. J. Physiol. (Lond.) 89: 372–383, 1937.Google Scholar
  4. 4.
    Anderson S. D., P. T. P. Bye, C. P. Perry, G. P. Hamor, G. Theobald, and G. Nyberg. Limitation of work performance in normal adult males in the presence of beta-adrenergic blocakade. Aust. N. Z. J. Med. 9: 515–520, 1979.PubMedGoogle Scholar
  5. 5.
    Ashkar E. Heart rate and blood pressure during exercise in dogs with autonomic denervation. Am. J. Physiol. 210: 950–952, 1966.PubMedGoogle Scholar
  6. 6.
    Ashkar E., J. J. Stevens, and B. A. Houssay. Role of the sympathicoadrenal system in the hemodynamic response to exercise in dogs. Am. J. Physiol. 214: 22–27, 1968.PubMedGoogle Scholar
  7. 7.
    Ashkar E. and W. F. Hamilton. Cardiovascular response to graded exercise in the sympathectomized-vagotomized dog. Am. J. Physiol. 204: 291–296, 1963.PubMedGoogle Scholar
  8. 8.
    Astrom H. and A. Juhlin-Dannfelt. Effect of beta-blockade on leg blood flow and lactate release in exercising man. Acta Med. Scand. 625 (Suppl. 44): 44–48, 1978.Google Scholar
  9. 9.
    Bacq Z. M. The metabolism of adrenaline. Pharmacol. Rev. 1: 1–26, 1949.Google Scholar
  10. 10.
    Bacq Z. M., L. Brouha, and C. Heymans. Recherches sur la physiologie et la pharmacologie du Systeme nerveux autonome. Arch. Int. Pharmacodyn. 48: 429–456, 1934.Google Scholar
  11. 11.
    Benison S., A. C. Barger, and E. L. Wolfe. Walter B. Cannon: The Life and Times of a Young Scientist. Cambridge, MA: Harvard University Press, 1987.Google Scholar
  12. 12.
    Bevegard B. S. and J. T. Shepherd. Circulatory effects of stimulating the carotid arterial stretch receptors in man at rest and during exercise. J. Clin. Invest. 45: 132–142, 1966.PubMedGoogle Scholar
  13. 13.
    Blomqvist C. G., S. F. Lewis, W. F. Taylor, and R. M. Graham. Similarity of the hemodynamic response to static and dynamic exercise of small muscle groups. Cir. Res. 48 (Suppl. Part II): I87 - I92, 1981.Google Scholar
  14. 14.
    Bowen W. P. Changes in heart-rate, blood pressure, and duration of systole resulting from bicycling. Am. J. Physiol. 11: 59–77, 1904.Google Scholar
  15. 15.
    Brouha L., W. R. Cannon, and D. B. Dill. The heart rate of the sympathectomized dog in rest and exercise. J. Physiol. (Lond.) 87: 345–359, 1936.Google Scholar
  16. 16.
    Brouha L., S. J. G. Nowak, and D. B. Dill. The role of the vagus in the cardio-accelerator action of muscular exercise and emotion in sympathectomized dogs. J. Physiol. (Lond.) 95: 454–463, 1939.Google Scholar
  17. 17.
    Buckenmeyer P. J., A. H. Goldfarb, J. S. Partilla, J. S. Pineyro, and E. M. Dax. Endurance training, not acute exercise, differently alters /3-receptors and cyclase in skeletal fiber types. Am. J. Physiol. (Endocrinol. Metab. 21 ) 258: E71 - E77, 1990.Google Scholar
  18. 18.
    Buckwalter J. B., P. J. Mueller, and P. S. Clifford. Autonomic control of skeletal muscle vasodilation during exercise. J. Appl. Physiol. 83: 2037–2042, 1997.PubMedGoogle Scholar
  19. 19.
    Buskirk E. R. and C. M. Tipton. Exercise physiology. In: The History of Exercise and Sport Science, edited by J. D. Massengale and R. A. Swanson. Champaign, IL: Human Kinetics, 1997, 357–438.Google Scholar
  20. 20.
    Campos F. A. de M., W. B. Cannon., H. Lundin, and T. T. Walker. Some conditions affecting the capacity for prolonged muscular work. Am. J. Physiol. 87: 680–701, 1929.Google Scholar
  21. 21.
    Cannon W. B. Organization for physiological homeostasis. Physiol. Revs. 9: 399–431, 1929.Google Scholar
  22. 22.
    Cannon W. B. Stresses and strains of homeostasis. Am. J. Med. Sci. 189: 1–14, 1935.Google Scholar
  23. 23.
    Cannon W. B. The emergency function of the adrenal medulla in pain and the major emotions. Am. J. Physiol. 33: 356–372, 1914.Google Scholar
  24. 24.
    Cannon W. B. and Z. M. Bacq. Studies on the conditions of activity in endocrine organs. XXVI. A hormone produced by sympathetic action on smooth muscle. Am. J. Physiol. 96: 392–412, 1931.Google Scholar
  25. 25.
    Cannon W. B. and D. de la Paz. Emotional stimulation of adrenal secretion. Am. J. Physiol. 28: 64–70, 1911.Google Scholar
  26. 26.
    Cannon W. B. and L. B. Nice. The effect of adrenal secretion on muscular fatigue. Am. J. Physiol. 32: 44–60, 1913.Google Scholar
  27. 27.
    Cannon W. B. and A. Rosenblueth. Studies on conditions of activity in endocrine organs. XXIX. Sympathin E and sympathin I. Am. J. Physiol. 104: 557–574, 1933.Google Scholar
  28. 28.
    Chen H. and Y-L. Liao. Effects of chronic exercise on muscarinic receptor-mediated vasodilation in rats. Chinese J. Physiol. 41: 161–166, 1998.Google Scholar
  29. 29.
    Cooper T., J. W. Gilbert, Jr., R. D. Bloodwell, and J. R. Crout. Chronic extrinsic cardiac denervation by regional neural ablation. Cir. Res. 9: 275–281, 1961.Google Scholar
  30. 30.
    Coote J. H., S. M. Hilton, and J. E. Perez-Gonzalez. The reflex nature of the pressor response to muscular exercise. J. Physiol. (Lond.) 215: 789–804, 1971.Google Scholar
  31. 31.
    Craig F. N. Effects of atropine, work and heat on heart rate and sweat production in man. J. Appl. Physiol. 4: 826–833, 1952.PubMedGoogle Scholar
  32. 32.
    Dale H. H. On some physiological actions of ergot. J. Physiol. (Lond.) 34: 163–206, 1906.Google Scholar
  33. 33.
    Dale H. H. The action of certain esters and ethers of choline, and their relationship to muscarine. J. Pharmacol. Exp. Ther. 6: 174–190, 1914.Google Scholar
  34. 34.
    Daskalopoulos D. A., J. T. Shepherd, and S. C. Wagenbach. Cardiopulmonary reflexes and blood pressure in exercising sinoaortic-denervated dogs. J. Appl. Physiol. 57: 1417–1421, 1984.PubMedGoogle Scholar
  35. 35.
    Davies C. T. M., J. Few, K. G. Foster, and A. J. Sargeant. Plasma catecholamine concentration during dynamic exercise involving different muscle groups. Eur. J. Appl. Physiol. 32: 195–206, 1974.Google Scholar
  36. 36.
    DiCarlo S. E. and V. S. Bishop. Exercise training attenuates baroreflex regulation of nerve activity in rabbits. Am. J. Physiol. 255 (Heart Circ. Physiol. 24): H974 — H979, 1988.PubMedGoogle Scholar
  37. 37.
    Dicarlo S. E. and V. S. Bishop. Onset of exercise shifts operating point of arterial baroreflex to higher pressures. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H303 — H307, 1992.PubMedGoogle Scholar
  38. 38.
    DiCarlo S. E. and V. S. Bishop. Regional vascular resistance during exercise: role of cardiac afferents and exercise training. Am. J. Physiol. 258 (Heart Circ. Physiol. 27): H842 — H847, 1990.PubMedGoogle Scholar
  39. 39.
    DiCarlo S. E., R. W. Blair, V. S. Bishop, and H. L. Stone. Role of ß2-adrenergic receptors on coronary resistance during exercise. J. Appl. Physiol. 64: 2287–2293, 1988.PubMedGoogle Scholar
  40. 40.
    DiCarlo S. E., L. K. Stahl, and V. S. Bishop. Daily exercise attenuates the sympathetic nerve response to exercise by enhancing cardiac afferents. Am. J. Physiol. 273 (Heart Circ. Physiol. 42): H1606 — H1610, 1997.PubMedGoogle Scholar
  41. 41.
    Donald D. E., S. E. Milburn, and J. T. Shepherd. Effect of cardiac denervation on the maximum capacity for exercise in the racing greyhound. J. Appl. Physiol. 19: 849–852, 1964.PubMedGoogle Scholar
  42. 42.
    Donald D. E., D. J. Rowlands, and D. A. Ferguson. Similarity of blood flow in the normal and the sympathectomized dog hind limb during graded exercise. Cir. Res. 26: 185–199, 1970.Google Scholar
  43. 43.
    Donald D. E. and J. T. Shepherd. Response to exercise in dogs with cardiac denervation. Am. J. Physiol. 205: 393–400, 1963.PubMedGoogle Scholar
  44. 44.
    Eckberg D. L. High-and low-pressure baroreflexes. In: Primer on the Autonomic Nervous System, edited by D. Robertson, P. A. Low, and R. J. Polinsky. San Diego, CA: Academic Press, 1996, pp. 59–65.Google Scholar
  45. 45.
    Edwards J. G., D. D. Lund, T. G. Bedford, C. M. Tipton, R. D. Matthes, and P. G. Schmid. Metabolic and cardiovascular adaptations in trained hypophysectomized rats. J. Appl. Physiol. 53: 448–454, 1982.PubMedGoogle Scholar
  46. 46.
    Ekblom B., A. N. Goldbarg, A. Kilbom, A. and P.-O. Astrand. Effect of atropine and propranolol on the oxygen transport system during exercise in man. Scand. J. Clin. Lab. Invest. 30: 35–42, 1972.PubMedGoogle Scholar
  47. 47.
    Ekstrom-Jodal B., E. Haggendal, R. Malmberg, and N. Svedmyr. The effect of adrenergicreceptor blockade on coronary circulation in man during work. Acta Med. Scand. 10: 245–248, 1972.Google Scholar
  48. 48.
    Epstein S. E., B. H. Robinson, R. L. Kahler, and E. Braunwald. Effect of beta-adrenergic blockade on the cardiac response to maximal and submaximal exercise in man. J. Clin. Invest. 44: 1745–1753, 1965.PubMedGoogle Scholar
  49. 49.
    Ernst S. B., W. J. Mullin, R. E. Herrick, and K.M. Baldwin. Exercise and cardiac performance capacity in rats with partial sympathectomy. J. Appl. Physiol. 53: 242–246, 1982.PubMedGoogle Scholar
  50. 50.
    Esler M., G. Jennings, G. Lambert, I. Meredith, M. Home, and G. Eisenhofer. Overflow of catecholamine neurotransmitters to the circulation: Source, fate and functions. Physiol. Rev. 70: 963–985, 1990.PubMedGoogle Scholar
  51. 51.
    Essex H. E., J. F. Herrick, E. J. Baldes, and F. C. Mann. Effects of exercise on the coronary blood flow, heart rate and blood pressure of trained dogs with denervated and partially denervated hearts. Am. J. Physiol. 138: 687–697, 1943.Google Scholar
  52. 52.
    Euler U. S. von. Noradrenaline: Chemistry, Physiology, Pharmacology, and Clinical Aspects. Springfield, IL: Charles C. Thomas, 1956.Google Scholar
  53. 53.
    Euler U.S. von and S. Hellner. Excretion of noradrenaline and adrenaline in muscular work. Acta Physiol. Scand. 26: 183–191, 1952.Google Scholar
  54. 54.
    Ewy G. A., J. H. Wilmore, A. R. Morton, P. R. Stanforth, S. H. Constable, M. J. Buono, K. A. Conrad, H. Miller, and C. F. Gatewood. The effect of beta-adrenergic blockade on obtaining a trained exercise state. J. Cardiac Rehab. 3: 25–29, 1983.Google Scholar
  55. 55.
    Faris I. B., G. G. Jamieson, and J. Ludbrook. Effect of exercise on gain of the carotid-sinus reflex in rabbits. Clin. Sci. 63: 115–119, 1982.PubMedGoogle Scholar
  56. 56.
    Farrar R. P., K. A. Monnin, D. E. Frodyce, and T. J. Walters. Uncoupling of changes in skeletal muscle ß-adrenergic receptor density and aerobic capacity during the aging process. Aging 9: 153–158, 1997.PubMedGoogle Scholar
  57. 57.
    Fell R. D., F. H. Lizzo, P. Chervoni, and D. L. Crandall. Effect of contractile activity on rat skeletal muscle ß-adrenoceptor properties. Proc. Soc. Expl. Biol. Med. 180: 527–532, 1985.Google Scholar
  58. 58.
    Fernandes A., H. Galbo, M. Kjaer, J. H. Mitchell, N. H. Secher, and S. N. Thomas. Cardiovascular and ventilatory responses to dynamic exercise during epidural anaesthesia in man. J. Physiol. (Lond.) 420: 281–293, 1990.Google Scholar
  59. 59.
    Freund P. R., S. E. Hobbs, and L. B. Rowell. Cardiovascular responses to muscle ischemia in man-dependency on muscle mass. J. Appl. Physiol. 45: 762–767, 1978.PubMedGoogle Scholar
  60. 60.
    Freund P. R., L. B. Rowell, T. M. Murphy, S. F. Hobbs, and S. B. Butler. Blockade of the response to muscle ischemia by sensory nerve block in man. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H433 - H439, 1979.PubMedGoogle Scholar
  61. 61.
    Freyschuss U. Elicitation of heart rate and blood pressure increase on muscle contraction. J. Appl. Physiol. 28: 758–761, 1970.PubMedGoogle Scholar
  62. 62.
    Friendenthal H. Ueber die Entfornung der extracardialen Herznerven bei Saugethieren. Archiv fur Physiologie 1: 135–145, 1906.Google Scholar
  63. 63.
    Galbo H. Hormonal and Metabolic Adaptation to Exercise. Stuttgart: Georg Thieme Verlag, Stuttgart, 1983.Google Scholar
  64. 64.
    Galbo H, J. J. Host, and N. J. Christensen. Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J. Appl. Physiol. 38: 70–76, 1975.PubMedGoogle Scholar
  65. 65.
    Galbo H., J. J. Host, N. J. Christensen, and J. Hilsted. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man. J. Appl. Physiol. 40: 855–863, 1976.PubMedGoogle Scholar
  66. Gaskell W. H. On the structure, distribution and function of the nerves which innervate the visceral and vascular systems. J. Physiol. (Lond.) 1-80, 1886.Google Scholar
  67. 67.
    Gasser H. S. and W. J. Meek. A study of the mechanisms by which muscular exercise produces acceleration of the heart. Am. J. Physiol. 34: 48–71, 1914.Google Scholar
  68. 68.
    Goodwin G. M., D. I. McCloskey, and J.H. Mitchell. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J. Physiol. (Lond.) 236: 173–190, 1972.Google Scholar
  69. 69.
    Gray I. and W. R Beetham, Jr. Changes in plasma concentration of epinephrine and nor-epinephrine with muscular work. Proc. Soc. Exp. Biol. Med. 96: 636–638, 1957.PubMedGoogle Scholar
  70. 70.
    Gregg D. E., E. M. Khouri, D. E. Donald, H. S. Lowensohn, and S. Pasyk. Coronary circulation in the conscious dog with cardiac neural ablation. Cir. Res. 31: 129–144, 1972.Google Scholar
  71. 71.
    Gwirtz R. A., H. J. Mass, J. R. Strader, and C. E. Jones. Coronary and cardiac responses to exercise after chronic ventricular sympathectomy. Med. Sci. Sports Exerc. 20: 126–135, 1988.PubMedGoogle Scholar
  72. 72.
    Gwirtz P. A. and H. L. Stone. Coronary vascular response to adrenergic stimulation in exercise-conditioned dogs. J. Appl. Physiol. 57: 315–320, 1984.PubMedGoogle Scholar
  73. 73.
    Gwirtz R A. and H. L. Stone. Coronary blood flow and myocardial oxygen consumption after alpha adrenergic blockade during submaximal exercise. J. Pharmacol. Exp. Ther. 217: 92–98, 1981.PubMedGoogle Scholar
  74. 74.
    Haggendal J., H. Hartley, and B. Saltin. Arterial noradrenaline concentration during exercise in relation to the relative work levels. Scand. J. Clin. Lab. Invest. 26: 337–342, 1970.PubMedGoogle Scholar
  75. 75.
    Hales J. R. S. and J. Ludbrook. Baroreflex participation in redistribution of cardiac output at onset of exercise. J. Appl. Physiol. 64: 627–634, 1988.PubMedGoogle Scholar
  76. 76.
    Hamill R. W. Peripheral autonomic nervous system. In: Primer on the Autonomic Nervous System, edited by D. Robertson, P. A. Low, and R. J. Polinsky. San Diego: CA: Academic Press, 1996, pp. 12–25.Google Scholar
  77. 77.
    Hammond H. K., F. C. White, L. L. Brunton, and J. C. Longhurst. Association of decreased myocardial /3-receptors and chronotropic response to isoproterenol and exercise in pigs following chronic dynamic exercise. Cir. Res. 60: 720–726, 1987.Google Scholar
  78. 78.
    Hansen J., G. D. Thomas, S. A. Harris, W. J. Parsons, and R. G. Victor. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J. Clin. Invest. 98: 584–596, 1996.PubMedGoogle Scholar
  79. 79.
    Hansen J., G. D. Thomas, T. N. Jacobsen, and R. G. Victor. Muscle metaboreflex triggers parallel sympathetic activation in exercising and resting human skeletal muscle. Am. J. Physiol. 266 (Heart Circ. Physiol. 35): H2508 - H2514, 1994.PubMedGoogle Scholar
  80. 80.
    Hartley L. H., J. W. Mason, R. R Hogan, L. G. Jones, T. A. Kotchen, E. H. Mougey, F. E. Wherry, L. L. Pennington, and R. T. Ricketts. Multiple hormonal responses to graded exercise in relation to physical training. J. Appl. Physiol. 33: 602–606, 1972.PubMedGoogle Scholar
  81. 81.
    Harding O. J., I. Noer, T. L. Svendsen, J. P. Clausen, and J. Trap-Jensen. Selective and nonselective /3-adrenorecptor blockade in the human foreman. Clin. Sci. 58: 279–286, 1980.Google Scholar
  82. 82.
    Hartman F. A., R. H. Waite, and H. A. McCordock. The liberation of epinephrin during muscular exercise. Am. J. Physiol. 62: 225–241, 1922.Google Scholar
  83. 83.
    Hasking G. J., M. D. Esler, G. L. Jennings, E. Dewar, and G. Lambert. Norepinephrine spillover to plasma during steady-state supine bicycle exercise. Circulation 78: 516521, 1988.Google Scholar
  84. 84.
    Hering H. E. Der Karotisdruckversuch. Munch. Med. Wochschr. 70: 1287–1290, 1923.Google Scholar
  85. 85.
    Hering H. E. Ueber die Beziehung der extracardialen Herznerven zur Steigerung der Herzchlagzahl dei Muskelthatigkeit. Archiv fur die Gesammte Physiologie 40: 429492, 1895.Google Scholar
  86. 86.
    Herxheimer H. Zur Bradykardie der Sportsleute. Muench. Med. Wochschr. 68: 1515–1518, 1921.Google Scholar
  87. 87.
    Hespel P., P. Lijnen, L. Vanhees, R. Fagard, and A. Amery. ß-Adrenoceptors and the regulation of blood pressure and plasma renin during exercise. J. Appl. Physiol. 60: 108–113, 1986.PubMedGoogle Scholar
  88. 88.
    Heyndrickx G. R., J.-L. Pannier, P. Muylaert, C. Mabilde, and I. Leusen. Alteration in myocardial oxygen balance during exercise after ß-adrenergic blockade in dogs. J. Appl. Physiol. 49: 28–33, 1980.PubMedGoogle Scholar
  89. 89.
    Heyndrickx G. R., J-P. Vilaine, E. J. Moerman, and I. Leusen. Role of prejunctional a2adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circ. Res. 54: 683–693, 1984.PubMedGoogle Scholar
  90. 90.
    Hoffman B. B. and R. J. Lefkowitz. Alpha-adrenergic receptor subtypes. N. Engl. J. Med. 302: 1390–1396, 1980.PubMedGoogle Scholar
  91. 91.
    Hohimer A. R. and O. A. Smith. Decreased renal blood flow in the baboon during mild dynamic leg exercise. Am. J. Physiol. (Heart Circ. Physiol. 5 ) 236: H141 - H150, 1979.Google Scholar
  92. 92.
    Holtz P., K. Credner, and G. Kroneberg. Uber das sympathicomimetische pressorische Prinzip des Harns (“urosympathin”). Naunyn-Schmiedebergs Arch. 204: 228–243, 1947.Google Scholar
  93. 93.
    Innes I. R. and M. Nickerson. Drugs inhibiting the action of acetylcholine on structures innervated by post ganglionic nerves (antimuscarinic or atropine drugs). In: The Pharmacological Basis of Therapeutics ( 4th ed. ), edited by L. S. Goodman and A. Gilman. New York: The Macmillan Co., 1970, pp. 524–548.Google Scholar
  94. 94.
    Jacobj C. Beitrage zur physiologischen und pharmakologischen Kenntniss der Darmbewegungen mit besonderer Berucksichtigung der Beziehung der Nebenniere zu denselben. Arch. Exp. Pathol. Pharmak. 29: 171–211, 1892.Google Scholar
  95. 95.
    Jennings G., L. Nelson, P. Nestel, M. Esler, P. Korner, D. Burton, and J. Bazelmans. The effects of changes in physical activity on major cardiovascular risk factors, hemodynamics, sympathetic function, and glucose utilization in man: a controlled study of four levels of activity. Circulation 73: 30–40, 1986.PubMedGoogle Scholar
  96. 96.
    Johansson J. E. Ueber die Einwirkung der Muskelthatigkeit auf die Athmung und die Herzthatigkeit. Skan. Arch. Physiol. 5: 20–66, 1893.Google Scholar
  97. 97.
    Jorgensen C. R., K. Wang, Y. Wang, F. L. Gobel, R. R. Nelson, and H. Taylor. Effect of propranolol on myocardial oxygen consumption and its hemodynamic correlates during upright exercise. Circulation 48: 1173–1182, 1973.PubMedGoogle Scholar
  98. 98.
    Jose A. D. Effect of combined sympathetic and parasympathetic blockade on heart rate and cardiac function in man. Am. J. Cardiol. 18: 476–478, 1966.PubMedGoogle Scholar
  99. 99.
    Jose A. D., F. Stitt, and D. Collison. The effects of exercise and changes in body temperature on the intrinsic heart rate in man. Am. Heart J. 79: 488–498, 1970.PubMedGoogle Scholar
  100. 100.
    Joyner M. J., B. F. Freund, S. M. Jilka, G. A. Hetrick, E. Martinez, G. A. Ewy, and J. H. Wilmoe. Effects of /3-blockade on exercise capacity of trained and untrained men: a hemodynamic comparison. J. Appl. Physiol. 60: 1429–1434, 1986.PubMedGoogle Scholar
  101. 101.
    Joyner M. J., S. M. Jilka, J. A. Taylor, J. K. Kalis, J. Nittolo, R. W. Hicks, T. G. Lohman, and J. H. Wilmore. ß-Blockade reduces tidal volume during heavy exercise in trained and untrained men. J. Appl. Physiol. 62: 1819–1825, 1987.PubMedGoogle Scholar
  102. 102.
    Kahler R. L., T. E. Gaffney, and E. Braunwald. The effects of autonomic nervous system inhibition on the circulatory response to muscular exercise. J. Clin. Invest. 41: 1981 1987, 1962.Google Scholar
  103. 103.
    Kaiser P., S. Rossner, and J. Karlsson. Effects of ß-adrenergic blockade on endurance and short-time performance in respect to individual muscle fiber composition. Int. J. Sports Med. 2: 37–42, 1981.PubMedGoogle Scholar
  104. 104.
    Karpovich P. V. Physiology of Muscular Exercise ( 5th ed. ). Philadelphia: W. B. Saunders, 1959.Google Scholar
  105. 105.
    Kaufman M. P. and H. B. Forster. Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems, edited by L. B. Rowell and J. T. Shepherd. New York: Oxford University Press, 1996, pp. 381–447.Google Scholar
  106. 106.
    Kim S.-J., G. Kline, and P. A. Gwirtz. Limitation of cardiac output by a coronary al-constrictor tone during exercise in dogs. Am. J. Physiol. 271 (Heart Circ. Physiol. 40): H1125 - H1131, 1996.PubMedGoogle Scholar
  107. 107.
    Kjellmer I. On the competition between metabolic vasodilation and neurogenic vasoconstriction in skeletal muscle. Acta Physiol. Scand. 63: 450–459, 1965.PubMedGoogle Scholar
  108. 108.
    Korner R I. Central nervous control of autonomic function. In: Handbook of Physiology, The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: American Physiological Society, 1979, pp. 691–739.Google Scholar
  109. 109.
    Kotchen T. A., L. H. Hartley, T. W. Rice, E. H. Mougey, L. G. Jones, and J. W. Mason. Renin, norepinephrine, and epinephrine responses to graded exercise. J. Appl. Physiol. 31: 178–184, 1971.PubMedGoogle Scholar
  110. 110.
    Krasney J. A., M. G. Levitzky, and R. C. Koehler. Sinoaortic contribution to the adjustment of systemic resistance in exercising dogs. J. Appl. Physiol. 36: 679–685, 1974.PubMedGoogle Scholar
  111. 111.
    Krogh A. and J. Lindhard. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. (Lond.) 31: 112–133, 1904.Google Scholar
  112. 112.
    Kuntz A. The Autonomic Nervous System ( 4th ed. ). Philadelphia: Lea and Febiger, 1953, pp. 15–20.Google Scholar
  113. 113.
    Lands A. M., A. Arnold, J. P. McAuliff, F. P. Luduena, and T. G. Brown, Jr. Differentiation of receptor systems activated by sympathomimetic amines. Nature 214: 597–598, 1967.PubMedGoogle Scholar
  114. 114.
    Langer S. Z. Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 23: 1793–1800, 1974.PubMedGoogle Scholar
  115. 115.
    Langley J. N. On the union of cranial autonomic (visceral) fibres with the nerve cells of the susperior cervial ganglia. J. Physiol. (Lond.) 23: 240–270, 1898.Google Scholar
  116. 116.
    Langley J. N. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J. Physiol. (Lond.) 33: 374–413, 1905.Google Scholar
  117. 117.
    Langley J. N. and W.L. Dickinson. On the local paralysis of peripheral ganglia, and on the connection of different classes of nerve fibers with them. Proc. R. Soc. B. 46: 423131, 1889.Google Scholar
  118. 118.
    Laughlin M. H. and R. B. Armstrong. Adrenoceptor effects on rat muscle blood flow during treadmill exercise. J. Appl. Physiol. 62: 1465–1472, 1987.PubMedGoogle Scholar
  119. 119.
    Laughlin M. H., R. J. Korthius, D. K. Duncker, and R. J. Bache. Control of blood flow to cardiac and skeletal muscle during exercise. In: Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems, edited by L. B. Rowell and J. T. Shepherd. New York: Oxford University Press, 1996, pp. 705–765.Google Scholar
  120. 120.
    Leuenberger U., L. Sinoway, S. Gubin, L. Gaul, D. Davis, and R. Zelis. Effects of exercise intensity and duration on norepinephrine spillover and clearance in humans. J. Appl. Physiol. 75: 668–674, 1993.PubMedGoogle Scholar
  121. 121.
    Lewis S. F., E. Nylander, R Gad, and N.-H. Areskog. Non-autonomic component in bradycardia of endurance trained men at rest and during exercise. Acta Physiol. Scand. 109: 297–305, 1980.PubMedGoogle Scholar
  122. 122.
    Lindhard J. Untersuchungen uber statische Muskelarbeit. Skand. Arch. Physiol. 40: 145194, 1920.Google Scholar
  123. 123.
    Loewi O. Uber humorale Ubertragbartkeit der Herzenvenwirkung. Pflugers Arch. 189: 239–242, 1921.Google Scholar
  124. 124.
    Ludbrook J. and W. F. Graham. Circulatory responses to onset of exercise: role of arterial and cardiac baroreflexes. Am. J. Physiol. 248 (Heart Circ. Physiol 17): H457 — H467, 1985.PubMedGoogle Scholar
  125. 125.
    Maciel B. C., L. Gallo, Jr., J. A. Marvin Neto, and L. E. B. Martins. Autonomic nervous control of the heart rate during isometric exercise in normal man. Pflugers Arch. 408: 173–177, 1987.Google Scholar
  126. 126.
    Maclntosh A. M., W. M. Mullin, D. P. Fitzsimons, R. E. Herrick, and K.M. Baldwin. Cardiac biochemical and functional adaptations to exercise in sympathectomized neonatal rats. J. Apps. Physiol. 60: 991–996, 1986.Google Scholar
  127. 127.
    Maksud M. G., K. D. Coutts, F. E. Tristani, J. R. Dorchak, J. J. Barboriak, and L. H. Hamilton. The effects of physical conditioning and propranolol on physical work capacity. Med. Sci. Sports 4: 225–229, 1972.PubMedGoogle Scholar
  128. 128.
    Marey J. Recherches sur le pouls au Moyen d’un Nouvel Appareil Enregistreur le Sphygmographe. Mem. Soc. Biol. (Paris). Ser. 3, 1: 281–286, 1859.Google Scholar
  129. 129.
    Mark A. L., R. G. Victor, C. Nerhed, and B. G. Wallin. Microneurographic studies of the mechanisms of sympathetic nerve responses to static exercise in humans. Circ. Res. 57: 461–469, 1985.PubMedGoogle Scholar
  130. 130.
    Martin III W. H., A. R. Coggan, R. J. Spina, and J. E. Saffitz. Effects of fiber type and training on ß-adrenoceptor density in human skeletal muscle. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E736 — E742, 1989.PubMedGoogle Scholar
  131. 131.
    Mass H. and P. A. Gwirtz. Myocardial flow and function after regional ß-blockade in exercising dogs. Med. Sci. Sports Exerc. 19: 443–450, 1987.PubMedGoogle Scholar
  132. 132.
    Matsukawa K., J. H. Mitchell, P. T. Wall, and L. B. Wilson. The effect of static exercise on renal sympathetic nerve activity in conscious cats. J. Physiol. (Lond.) 434: 453–467, 1991.Google Scholar
  133. 133.
    Mazzeo R. S., D. A. Podolin, and V. Henry. Effects of age and endurance training on ßadrenergic receptor characteristics in Fischer 344 rats. Mech. Ageing Dev. 84: 157–169, 1995.PubMedGoogle Scholar
  134. 134.
    Mazzeo R. S., C. Rajkumar, G. Jennings, and M. Esler. Norepinephrine spillover at rest and during submaximal exercise in young and old subjects. J. Apps. Physiol. 82: 1869 1874, 1997.Google Scholar
  135. 135.
    McCurdy J.H. The effect of maximum muscular effort on blood pressure. Am. J. Physiol. 5: 95–103, 1901.Google Scholar
  136. 136.
    McLeod A. A., J. E. Brown, B. B. Kitchell, F. A. Sedor, C. Kuhn, D. G. Shand, and R. S. Williams. Hemodynamic and metabolic responses to exercise after adrenoceptor blockade in humans. J. Apps. Physiol. 56: 716–722, 1984.Google Scholar
  137. 137.
    McLeod A. A., K. D. Knopes, D. G. Shand, and R. S. Williams. ßl-selective and nonselective ß-adrenoceptor blockade, anaerobic threshold and respiratory gas exchange during exercise. Br. J. Clin. Pharmacol. 19: 13–20, 1985.PubMedGoogle Scholar
  138. 138.
    McLeod A. A., W. E. Kraus, and R. S. Williams. Effect of betas-selective and nonselective beta-adrenoceptor blockade during exercise conditioning in healthy adults. Am. J. Cardiol. 53: 1656–1661, 1984.PubMedGoogle Scholar
  139. 139.
    McRitchie R. J., S. F. Vatner, D. Boettcher, G. R. Heyndrickx, T. A. Patrick, and E. Braunwald. Role of aterrial baroreceptors in mediating cardiovascular response to exercise. Am. J. Physiol. 230: 85–89, 1976.PubMedGoogle Scholar
  140. 140.
    McSorley P. D. and D. J. Warren. Effects of propranolol and metoprolol on the peripheral circulation. B.M.J. 2: 1598–1600, 1978.Google Scholar
  141. 141.
    Melcher A. and D. E. Donald. Maintained ability of carotid reflex to regulate arterial pressure during exercise. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H838 — H849, 1981.Google Scholar
  142. 142.
    Meredith I. T., P. Friberg, G. L. Jennings, E. M. Dewar, V. A. Fazio, G.W. Lambert, and M. D. Esler. Exercise training lowers resting renal but not cardiac sympathetic activity in humans. Hypertension 18: 575–582, 1991.PubMedGoogle Scholar
  143. 143.
    Monro P. A. G. Sympathectomy. London: Oxford University Press, 1959, pp. 1–15.Google Scholar
  144. 144.
    Moore R. L., M. Riedy, and P. D. Gollnick. Effect of training on ß-adrenergic receptor number in rat heart. J. Appl. Physiol. 52: 1133–1137, 1982.PubMedGoogle Scholar
  145. 145.
    Murray P. A., and S. E. Vatner. a-Adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ. Res. 45: 654–660, 1979.PubMedGoogle Scholar
  146. 146.
    Nickerson M. Drugs inhibiting adrenergic nerves and structures innervated by them. In: The Pharmacological Basis of Therapeutics ( 4th ed. ), edited by L. S. Goodman and A. Gilman. New York: The Macmillan Co., 1970, pp. 549–584.Google Scholar
  147. 147.
    Nietro J. L., I. D. Laviada, A. Guillen, and A. Haro. Adenylyl cyclase system is affected differently by endurance physical training in heart and adipose. Biochem. Pharmacol. 51: 1321–1329, 1996.Google Scholar
  148. 148.
    Nordenfelt I. Haemodynamic response to exercise after combined sympathetic and parasympathetic blockade of the heart. Cardiovas. Res. 5: 215–222, 1971.Google Scholar
  149. 149.
    Nordenfelt I. Blood flow of working muscles during autonomic blockade of the heart. Cardiovasc. Res. 8: 263–267, 1974.PubMedGoogle Scholar
  150. 150.
    ’ Hagan K. P., L. B. Bell, S. W. Mittelstadt, and P. S. Clifford. Effect of dynamic exercise on renal sympathetic nerve activity in conscious rabbits. J. Appl. Physiol. 74: 2099 2104, 1993.Google Scholar
  151. 151.
    O’Hagan K. P., L. B. Bell, S. W. Mittelstadt, and P. S. Clifford. Cardiac receptors modulate the renal sympathetic response to dynamic exercise in rabbits. J. Appl. Physiol. 76: 507–515, 1994.Google Scholar
  152. 152.
    O’Leary D. S. Regional vascular resistance vs. conductance: which index for baroreflex responses? Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H632 — H637, 1991.PubMedGoogle Scholar
  153. 153.
    Oliver G. and E. A. Schafer. The physiological effects of extracts of the suprarenal capsule. J. Physiol. (Lond.) 18: 230–276, 1895.Google Scholar
  154. 154.
    Orbeli L. A. and G. Ginetzinski. Effect of the sympathetic nervous system on the function of muscle. Sechenov. Physiol. J. USSR 6:139–145, 1923 (Russian).Google Scholar
  155. 155.
    Ordway G. A., J. B. Charles, D. C. Randall, G. E. Billman, and D. R. Wekstein. Heart rate adaptation to exercise training in cardiac-denervated dogs. J. Appl. Physiol. 52: 1586 1590, 1982.Google Scholar
  156. 156.
    Papelier Y., P. Escourrou, J. P. Gauthier, and L. B. Rowell. Carotid baroreflex control of blood pressure and heart rate in men during dynamic exercise. J. Appl. Physiol. 77: 502–506, 1994.PubMedGoogle Scholar
  157. 157.
    Pawelczyk J. A., B. Hanel, R. A. Pawelczyk, J. Warberg, and N. H. Secher. Leg vasoconstriction during dynamic exercise with reduced cardiac output. J. Appl. Physiol. 73: 1838–1846, 1992.PubMedGoogle Scholar
  158. 158.
    Peronnet F., J. Cleroux, H. Perrault, D. Cousineau, J. De Champlain, and R. Nadeau. Plasma norepinephreine response to exercise before and after training in humans. J. Appl. Physiol. 51: 812–815, 1981.PubMedGoogle Scholar
  159. 159.
    Peterson D. F., R. B. Armstrong, and M. H. Laughlin. Sympathetic neural influences on muscle blood flow in rats during submaximal exercise. J. Appl. Physiol. 65: 434–440, 1988.PubMedGoogle Scholar
  160. 160.
    Pick J. The Autonomic Nervous System. Phildelphia: J. B. Lippincott Co., 1970, pp. 3–21.Google Scholar
  161. 161.
    Pirnay F., J. M. Delvaux, R. Deroanne, P. Wittamer, and J. M. Petit. Effet d’un bloqueur beta-adrenergique sur la reponse cardiaque pendant l’exercice musculaire. Int. Z. Angew. Physiol. 29: 88–93, 1970.Google Scholar
  162. 162.
    Plourde G., S. Rousseau-Migneron, and A. Nadeau. ß-Adrenoceptor adenylate cyclase system adaptation to physical training in rat ventricular tissue. J. Appl. Physiol. 70: 1633–1638, 1991.PubMedGoogle Scholar
  163. 163.
    Plourde G., S. Rousseau-Migneron, and A. Nadeau. Effect of endurance training on ß-adrenergic system in three different skeletal muscles. J. Appl. Physiol. 74: 1641–1646, 1993.PubMedGoogle Scholar
  164. 164.
    Potts J. T., X. R. Shi, and P. B. Raven. Carotid baroreflex responsiveness during dynamic exercise in humans. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H1928 - H1938, 1993.PubMedGoogle Scholar
  165. 165.
    Powell C. E. and I. H. Slater. Blocking of inhibitory adrenergic receptors by a dichloro analog of isoproterenol. J. Pharmacol. Exp. Ther. 122: 480–486, 1958.PubMedGoogle Scholar
  166. 166.
    Pryor S. L., S. F. Lewis, R. G. Haller, L. A. Bertocci, and R. G. Victor. Impairment of sympathetic activation during static exercise in with muscle phosphorylase defi- ciency (McArdle’s Disease). J. Clin. Invest. 85: 1444–1449, 1990.PubMedGoogle Scholar
  167. 167.
    Raab W. Adrenaline and related substances in blood and tissues. Biochem. J. 37: 470–473, 1943.PubMedGoogle Scholar
  168. 168.
    Rein H. Die Interferenz der vasomotorischen Regulationen. Klin. Wochen. 9: 1485–1489, 1930.Google Scholar
  169. 169.
    Remensnyder J. P., J. H. Mitchell, and S. J. Sarnoff. Functional sympatholysis during muscular activity. Circ. Res. 11: 370–380, 1962.PubMedGoogle Scholar
  170. 170.
    Robinson B. F., S. E. Epstein, G. D. Beiser, and E. Braunwald. Control of heart rate by the autonomic nervous system. Circ. Res. 19: 400–411, 1966.PubMedGoogle Scholar
  171. 171.
    Robinson S., M. Pearcy, F. R. Brueckman, J. R. Nicholas, and D. I. Miller. Effects of atropine on heart rate and oxygen intake in working man. J. Appl. Physiol. 5: 508–512, 1953.PubMedGoogle Scholar
  172. 172.
    Rohrer D. K., E. H. Schauble, K. H. Desai, B. K. Kobilka, and D. Bernstein. Alterations in dynamic heart rate control in the ßl-adrenergic receptor knockout mouse. Am. J. Physiol. 274 (Heart. Circ. Physiol. 43): H1184 - H1193, 1998.PubMedGoogle Scholar
  173. 173.
    Roth D. A. C. D. White, D. A. Podolin, and R. S. Mazzeo. Alterations in myocardial signal transduction due to aging and chronic dynamic exercise. J. Appl. Physiol. 84: 177–184, 1998.PubMedGoogle Scholar
  174. 174.
    Rothschuh K. E. History of Physiology. Huntington, NY: Robert E. Krieger Publishing Co., 1973.Google Scholar
  175. 175.
    Rotto D. M. and M. P. Kaufman. Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J. Appl. Physiol. 64: 2306–2313, 1988.PubMedGoogle Scholar
  176. 176.
    Rowell L. B. What signals govern the cardiovascular responses to exercise? Med. Sci. Sports Exerc. 12: 307–315, 1980.PubMedGoogle Scholar
  177. 177.
    Rowell L. B. Human Cardiovascular Control. New York: Oxford University Press, 1993.Google Scholar
  178. 178.
    Rowell L. B., L. Hermansen, and J. R. Blackmon. Human cardiovascular and respiratory responses to graded muscle ischemia. J. Appl. Physiol. 41: 693–701, 1976.PubMedGoogle Scholar
  179. 179.
    Rowell L. B. and D. S. O’Leary. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J. Appl. Physiol. 69: 407–418, 1990.PubMedGoogle Scholar
  180. 180.
    Rowell L. B., D. S. O’Leary, and D. L. Kellog, Jr. Integration of cardiovascular control systems in dynamic exercise. In: Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems, edited by L. B. Rowell and J. T. Shepherd. New York: Oxford University Press, 1996, pp. 770–838.Google Scholar
  181. 181.
    Rowell L. B., M. V. Savage, J. Chambers, and J. R. Blackmon. Cardiovascular responses to graded reductions in leg perfusion in exercising humans. Am. J. Physiol. 261 (Heart Circ. Physiol. 30): H1545 - H1553, 1991.PubMedGoogle Scholar
  182. 182.
    Ruble S. B., Z. Valic, J. B. Buckwalter, and P. S. Clifford. Dynamic exercise attenuates sympathetic responsiveness of canine vascular smooth muscle. J. Appl. Physiol. 89: 2294–2299, 2000.PubMedGoogle Scholar
  183. 183.
    Sable D. L., H. L. Brammell, M. W. Sheehan, A. S. Nies, J. Gerber, and L. D. Horwitz. Attenuation of exercise conditioning by beta-adrenergic blockade. Circulation 65: 679684, 1982.Google Scholar
  184. 184.
    Saito M., T. Mano, H. Abe, and S. Iwase. Responses in muscle sympathetic nerve activity to sustained hand-grips of different tensions in humans. Eur. J. Appl. Physiol. 55: 493498, 1986.Google Scholar
  185. 185.
    Saito M. M. Naito, and T. Mano. Different responses in skin and muscle sympathetic nerve activity to static muscle contraction. J. Appl. Physiol. 69: 2085–2090, 1990.PubMedGoogle Scholar
  186. 186.
    Saito M. A. Tsukanaka, D. Yanagihara, and T. Mano. Muscle sympathetic nerve responses to graded leg cycling. J. Appl. Physiol. 75: 663–667, 1993.PubMedGoogle Scholar
  187. 187.
    Samaan A. Muscular work in dogs submitted to different conditions of cardiac and splanchnic innervations. J. Physiol. (Land.) 83: 313–331, 1935.Google Scholar
  188. 188.
    Savard G. K., E. A. Richter, S. Strange, B. Kiens, N. J. Christensen, and B. Saltin. Norepinephrine spillover from skeletal muscle during exercise in humans: role of muscle mass. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1812–H1818, 1989.PubMedGoogle Scholar
  189. 189.
    Savard G., S. Strange, B. Kiens, E. A. Richter, N. J. Christensen, and B. Saltin. Noradrenaline spillover during exercise in active versus resting skeletal muscle in man. Acta Physiol. Scand. 131: 507–515, 1987.PubMedGoogle Scholar
  190. 190.
    Savin W. M., E. P. Gordon, S. M. Kaplan, B. F. Hewitt, D. C. Harrison, and W. L. Haskell. Exercise training during long-term beta-blockade treatment in healthy subjects. Am. J. Cardiol. 55: 101D - 109D, 1985.PubMedGoogle Scholar
  191. 191.
    Seals D. R. Influence of muscle mass on sympathetic neural activation during isometric exercise. J. Appl. Physiol. 67: 1801–1806, 1989.PubMedGoogle Scholar
  192. 192.
    Seals D. R. Influence of active muscle size on sympathetic nerve discharge during isometric contractions in humans. J. Appl. Physiol. 75: 1426–1431, 1993.PubMedGoogle Scholar
  193. 193.
    Seals D. R., R. G. Victor, and A. L. Mark. Plasma norepinephrine and muscle sympathetic discharge during rhythmic exercise in humans. J. Appl. Physiol. 65: 940–944, 1988.PubMedGoogle Scholar
  194. 194.
    Shen Y.-T., P. Cervoni, T. Claus, and S. F. Vatner. Differences in ß3-adrenergic receptor cardiovascular regulation in conscious primates, rats, and dogs. J. Pharmacol. Exp. Ther. 278: 1435–1443, 1996.PubMedGoogle Scholar
  195. 195.
    Sheriff D. D., C. R. Wyss, L. B. Rowell, and A. M. Scher. Does inadequate oxygen delivery trigger pressor response to muscle hypoperfusion during exercise? Am. J. Physiol. 253 (Heart Circ. Physiol. 22): H1199–H1207, 1987.PubMedGoogle Scholar
  196. 196.
    Sigvardsson K., E. Svanfeldt, and A. Kilbom. Role of the adrenergic nervous system in development of training-induced bradycardia. Acta Physiol. Scand. 101: 481–488, 1977.PubMedGoogle Scholar
  197. 197.
    Sinoway L., S. Prophet, I. Gorman, T. Mosher, J. Shenberger, M. Dolecki, R. Briggs, and R. Zelis. Muscle acidosis during static exercise is associated with calf vasoconstriction. J. Appl. Physiol. 66: 429–436, 1989.PubMedGoogle Scholar
  198. 198.
    Sinoway L. I., M. B. Smith, B. Enders, U. Leuenberger, T. Dzwonczyk, K. Gray, S. Whisler, and R. L. Moore. Role of diprotonated phosphate in evoking muscle reflex responses in cats and humans. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H770–H778, 1994.PubMedGoogle Scholar
  199. 199.
    Slowtzoff B. Ueber die Beziehungen zwischen Korpergrosse and Stoffverbrauch der Hunde bei Ruhe and Arbeit. Pflugers Arch. 95: 158–191, 1903.Google Scholar
  200. 200.
    Stapleton M. P. Sir James Black and propranolol. The role of the basic sciences in the history of cardiovascular pharmacology. Texas Heart Inst. J. 24: 336–342, 1997.Google Scholar
  201. 201.
    Stephenson R. B. and D. E. Donald. Reversible vascular isolation of carotid sinuses in conscious dogs. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H809–H814, 1980.Google Scholar
  202. 202.
    Stegemann J., A. Busert, and D. Brock. Influence of fitness on the blood pressure control system in man. Aerospace Med. 45: 45–48, 1974.PubMedGoogle Scholar
  203. 203.
    Strandell T. and J. T. Shepherd. The effect in humans of increased sympathetic activity on the blood flow to active muscles. Acta Med. Scand. 472: 146–167, 1967.Google Scholar
  204. 204.
    Sutton J. R., A. Cole, J. Gunning, J. B. Hickie, and W. A. Seldon. Control of heart-rate in healthy young men. Lancet 2: 1398–1400, 1967.PubMedGoogle Scholar
  205. 205.
    Svedenhag J., J. Henriksson, A. Juhlin-Dannfelt, and K. Asano. Beta-adrenergic blockade and training in healthy men—effects on central circulation. Acta Physiol. Scand. 120: 77–86, 1984.PubMedGoogle Scholar
  206. 206.
    Sweeney M. E., B. J. Fletcher, and G. F. Fletcher. Exercise testing and training with /3adrenergic blockade: Role of the drug washout period in “unmasking” a training effect. Am. Heart J. 118: 941–946, 1989.PubMedGoogle Scholar
  207. 207.
    Sylvestre-Gervais L., A. Nadeau, M. H. Nguyen, G. Tancrede, and S. RousseauMigneron. Effects of physical training on ß-adrenergic receptors in rat myocardial tissue. Cardiovasc. Res. 16: 530–534, 1982.PubMedGoogle Scholar
  208. 208.
    Tesch P. A. and P. Kaiser. Effect of /3-adrenergic blockade on maximal oxygen uptake in trained males. Acta Physiol. Scand. 112: 351–352, 1981.PubMedGoogle Scholar
  209. 209.
    Thompson L. P. and D. E. Mohrman. Blood flow and oxygen consumption in skeletal muscle during sympathetic stimulation. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H66 — H71, 1983.PubMedGoogle Scholar
  210. 210.
    Tipton C. M. Training and bradycardia in rats. Am. J. Physiol. 209: 1089–1094, 1965.PubMedGoogle Scholar
  211. 211.
    Traverse J. H., J. D Altman, J. Kinn, D. J. Duncker, and R. J. Bache. Effect of /3-adrenergic receptor blockade on blood flow to collateral-dependent myocardium during exercise. Circulation 91: 1560–1567, 1995.PubMedGoogle Scholar
  212. 212.
    Vallbo A. B., K.-E. Hagbarth, H. E. Torebjork, and B. G. Wallin. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol. Rev. 59: 919–957, 1979.PubMedGoogle Scholar
  213. 213.
    Vanhoutte P., E. Lacroix, and I. Leussen. The cardiovascular adaptation of the dog to muscular exercise. Role of the arterial pressoreceptors. Arch. Int. Physiol. Biochem. 74: 201–222, 1966.Google Scholar
  214. 214.
    Vatner S. F., D. Franklin, R. L. Van Citters, and E. Braunwald. Effects of carotid sinus nerve stimulation on blood-flow distribution in conscious dogs at rest and during exercise. Circ. Res. 27: 495–503, 1970.PubMedGoogle Scholar
  215. 215.
    Vendsalu A. Studies on adrenaline and noradrenaline in human plasma. Acta Physiol. Scand. 49 (Suppl. 173): 8–123, 1960.Google Scholar
  216. 216.
    Victor R. G., L. A. Bertocci, S. L. Pryor, and R. L. Nunnally. Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans. J. Clin. Invest. 82: 1301–1305, 1988.PubMedGoogle Scholar
  217. 217.
    Victor R. G., S. L. Pryor, N. H. Secher, and J. H. Mitchell. Effects of partial neuromuscular blockade on sympathetic nerve responses to static exercise in humans. Circ. Res. 65: 468–476, 1989.PubMedGoogle Scholar
  218. 218.
    Victor R. G. and D. R. Seals. Reflex stimulation of sympathetic outflow during rhythmic exercise in humans. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H2017 — H2024, 1989.PubMedGoogle Scholar
  219. 219.
    Victor R. R., D. R. Seals, and A. L. Mark. Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insights from intraneural recordings in humans. J. Clin. Invest. 79: 508–516, 1987.PubMedGoogle Scholar
  220. 220.
    Vissing J., D. A. MacLean, S. F. Vissing, M. Sander, B. Saltin, and R. G. Haller. The exercise metaboreflex is maintained in the absence of muscle acidosis: insights from muscle microdialysis in humans with McArdle’s disease. J. Physiol. (Lond.) 537: 641–649, 2001.Google Scholar
  221. 221.
    Vissing S. E, U. Scherrer, and R. G. Victor. Stimulation of skin sympathetic nerve discharge by central command. Circ. Res. 69: 228–238, 1991.PubMedGoogle Scholar
  222. 222.
    Volkmann A. W. Ueber die Bewegungen des Athmens and Schluckens, mit besonderer Berucksichtigung neurologischer Streitfragen. Arch. Anat. Physiol. Wissens. Med. 1: 332–360, 1841.Google Scholar
  223. 223.
    Wada M., M. Seo, and K. Abe. Effect of muscular exercise upon the epinephrine secretion from the suprarenal gland. Tohoku J. Exp. Med. 27: 65–86, 1935.Google Scholar
  224. 224.
    Waldrop T. G., F. L. Eldridge, G. A. Iwamoto, and J. H. Mitchell. Central neural control of respiration and circulation during exercise. In: Handbook of Physiology. Section 12, Exercise: Regulation and Integration of Multiple Systems, edited by L. B. Rowell and J. T. Shepherd. New York: Oxford University Press, 1996, pp. 333–380.Google Scholar
  225. 225.
    Walgenbach S. C. and D. E. Donald. Inhibition by carotid baroreflex of exercise-induced increase in arterial pressure. Circ. Res. 52: 253–262, 1983.PubMedGoogle Scholar
  226. 226.
    Walgenbach S. C. and J. T. Shepherd. Role of arterial and cardiopulmonary mechanoreceptors in the regulation of arterial pressure during rest and exercise in conscious dogs. Mayo Clin. Proc. 59: 467–475, 1984.PubMedGoogle Scholar
  227. 227.
    Wallin B. G. Peripheral sympathetic neural activity in conscious humans. Ann. Rev. Physiol. 50: 565–576, 1988.Google Scholar
  228. 228.
    Winder W. W., J. M. Hagberg, R. C. Hickson, A. A. Ehsani, and J. A. McLane. Time course of sympathoadrenal adaptation to endurance exercise training in man. J. Appl. Physiol. 45: 370–374, 1978.PubMedGoogle Scholar
  229. 229.
    Williams R. S. Physical conditioning and membrane receptors for cardioregulatory hormones. Cardiovasc. Res. 14: 177–182, 1980.PubMedGoogle Scholar
  230. 230.
    Williams R. S., M. G. Caron, and K. Daniel. Skeletal muscle ß-adrenergic receptors: variations due to fiber type and training. Am. J. Physiol. 246 (Endocrinol. Metab. 9): E160 — E167, 1984.PubMedGoogle Scholar
  231. 231.
    Wilmore J. H., G. A. Ewy, B. J. Freund, A. A. Hartzell, S. M. Jilka, M. J. Joyner, C. A. Todd, S. M. Kinzer, and E. B. Pepin. Cardiorespiratory alterations consequent to endurance exercise training during chronic beta-adrenergic blockade with atenolol and propranolol. Am. J. Cardiol. 55: 142D - 148D, 1985.PubMedGoogle Scholar
  232. 232.
    Winslow J. B. Exposition Anatomique du corp humanin. Paris: G. Desprez, 1732.Google Scholar
  233. 233.
    Wolfe E. L., A. C. Barger, and S. Benison. Walter B. Cannon, Science and Society. Cambridge, MA: Boston Medical Library, 2000, pp. 321–328.Google Scholar
  234. 234.
    Wyatt H. L., L. Chuck, B. Rabinowitz, J. V. Tyberg, and W. W. Parmley. Enhanced cardiac responses to catecholamines in physically trained cats. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H608 — H613, 1978.PubMedGoogle Scholar
  235. 235.
    Zuntz N. and J. Geppert. Ueber die Natur der normalen Athemreize und den Ort ihrer Wirkung. Arch. Ges. Physiol. 38: 337–338, 1886.Google Scholar
  236. 236.
    Zuntz N. Einfluss der Geschwindigkeit, der Korpertemperatur und der Uebung auf den Stoffverbrauch bei Ruhe und bei Muskelarbeit. Arch. Ges. Physiol. 95: 192–208, 1903.Google Scholar

Copyright information

© American Physiological Society 2003

Authors and Affiliations

  • Charles M. Tipton

There are no affiliations available

Personalised recommendations