Development of Cellular Host Defense Mechanisms

  • Sergei P. Sorokin
  • Richard F. HoytJr.
  • Nancy A. F. McNelly
Part of the Clinical Physiology Series book series (CLINPHY)


The lungs are well guarded against damage from inhaled gases, particulates, and microbes by a variety of local defenses provided by resident cells and hematological defenses provided by leukocytes and their products acting in the lungs. Various mechanisms are used in these defenses, and they come into being at different times during lung development as effector cells differentiate. In general, operation of all such defenses improves as cells become experienced in immunological cross talk or link up with sensory and motor nerves, and the time newly differentiated cells require to reach this state depends on cell type. Physiological processes of more macroscopic scale, represented by pulmonary mechanics and lung reflexes involving the central nervous system, eventually contribute substantially to these host defenses. Discussion of their ontogeny is beyond the scope of this review, which is limited to more intimate cellular interactions.


Fetal Lung Lung Development Clara Cell Conducting Airway Neuroepithelial Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguayo, S.M. and Y.E. Miller. Neuropeptides in inflammation and tissue repair. In: Handbook of Inflammation, Vol. 6: Mediators of the Inflammatory Process, edited by P.M. Henson and R.C. Murphy. New York: Elsevier, 1989, p. 219–244.Google Scholar
  2. 2.
    Allison, A.C. and Y. Nawata. Cytokines mediating the proliferation and differentiation of B-1 lymphocytes and their role in ontogeny and phylogeny. Ann. N.Y. Acad. Sci. 651: 200–219, 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    Alon, R., P.D. Kassner, M.W. Carr, E.B. Finger, M.E. Hemler, and T.A. Springer. The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J. Cell Biol. 128: 1243–1253, 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Baraniuk, J.N., and M. Kaliner. Neuropeptides and nasal secretion. Am. J. Physiol. 261: L223–L235, 1991.PubMedGoogle Scholar
  5. 5.
    Barnes, P.J., J.N. Baraniuk, and M.G. Belvisi. Neuropeptides in the respiratory tract. Am. Rev. Respir. Dis. 144: 1391–1399, 1991.PubMedCrossRefGoogle Scholar
  6. 6.
    Bienenstock, J. and D. Befus. Gut-and bronchus-associated lymphoid tissue. Am. J. Anat. 170: 437–445, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Bloom, W. Embryogenesis of mammalian blood. In: Handbook of Hematology, Vol. II, edited by H. Downey. New York: Paul B. Hoeber, 1938, p. 865–1151.Google Scholar
  8. 8.
    Boers, J.E., J.L.M. den Brok, J. Koudstaal, J.W. Arends, and F.B.J.M. Thunnissen. Number and proliferation of neuroendocrine cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 154: 758–763, 1996.PubMedCrossRefGoogle Scholar
  9. 9.
    Bosken, C.H., J. Hards, K. Gatter, and J.G. Hogg. Characterization of the inflammatory reaction in the peripheral airways of cigarette smokers using immunocytochemistry. Am. Rev. Respir. Dis. 145: 911–917, 1992.PubMedCrossRefGoogle Scholar
  10. 10.
    Brenner, M.B., J.L. Strominger, and M.S. Krangel. The gamma delta T cell receptor. Adv. Immunol. 43: 133–192, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Broers, J.L.V., S.M. Jensen, W.D. Travis, H. Pass, J.A. Whitsett, G. Singh, S.L. Katyal, A.M. Gazdar, J.D. Minna, and R.I. Linnoila. Expression of surfactant associated protein-A and Clara cell 10 kilodalton mRNA in neoplastic and non-neoplastic human lung tissue as detected by in situ hybridization. Lab. Invest. 66: 337–346, 1992.PubMedGoogle Scholar
  12. 12.
    Chien, Y., R. Jores, and M.P. Crowley. Recognition by y/5 T cells. Annu. Rev. Immunol. 14: 511–532, 1996.PubMedCrossRefGoogle Scholar
  13. 13.
    Cripps, A.W., M.L. Dunkley, R.L. Clancy, F. Wallace, A. Buret, and D.C. Taylor. An animal model to study the mechanisms of immunity induced in the respiratory tract by intestinal immunization. Adv. Exp. Med. Biol. 371b: 749–753, 1995.Google Scholar
  14. 14.
    Cumano, A., C.J. Paige, N.N. Iscove, and G. Brady. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356: 612–615, 1992.PubMedCrossRefGoogle Scholar
  15. 15.
    Cutz, E. Cytomorphology and differentiation of airway epithelium in developing human lung. In: Lung Carcinomas, edited by E.M. McDowell. New York: Churchill Livingston, 1987, p. 1–41.Google Scholar
  16. 16.
    Dodge, D.E., R.B. Rucker, G. Singh, and C.G. Plopper. Quantitative comparison of intracellular concentration and volume of Clara cell 10 KD protein in rat bronchi and bronchioles based on laser scanning confocal microscopy. J. Histochem. Cytochem. 41: 1171–1184, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    Ebina, M., R.F. Hoyt, Jr., N.A.F. McNelly, S.P. Sorokin, and R.I. Linnoila. Effects of hydrogen and bicarbonate ions on endocrine cells in fetal rat lung organ cultures. Am. J. Physiol. 272: L178–L186, 1997.PubMedGoogle Scholar
  18. 18.
    Emery, J.L. and F. Dinsdale. The postnatal development of lymphoreticular aggregates and lymph nodes in infants’ lungs. J. Clin. Pathol. 26: 539–545, 1973.PubMedCrossRefGoogle Scholar
  19. 19.
    Farber, J.P. Development of pulmonary and chest wall reflexes influencing breathing. In: Developmental Neurobiology of Breathing, edited by G.G. Haddad and J.P. Farber. New York: Marcel Dekker, 1991, p. 245–269.Google Scholar
  20. 20.
    Faust, N., M.C. Huber, A.E. Sippel, and C. Bonifer. Different macrophage populations develop from embryonic/fetal and adult hematopoietic tissues. Exp. Hematol. 25: 432–444, 1997.PubMedGoogle Scholar
  21. 21.
    Fischer, A. and B. Hoffmann. Nitric oxide synthase in neurons and nerve fibers of lower airways and in vagal sensory ganglia of man. Correlation with neuropeptides. Am. J. Respir. Crit. Care Med. 154: 209–216, 1996.PubMedCrossRefGoogle Scholar
  22. 22.
    Froh, D., L.W. Gonzales, and P.L. Ballard. Secretion of surfactant protein A and phosphatidylcholine from type II cells of human fetal lung. Am. J. Respir. Cell Mol. Biol. 8: 556–561, 1993.PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia-Porrero, J.A., I.E. Godin, and F. Dieterlen-Lievre. Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat. Embryol. 192: 425–435, 1995.PubMedCrossRefGoogle Scholar
  24. 24.
    Girard, J-P. and T.A. Springer. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol. Today 16: 449–457, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Godin, I.E., J.A. Garcia-Porrero, A. Coutinho, F. Dieterlen-Lievre, and M.A.R. Marcos. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364: 67–70, 1993.PubMedCrossRefGoogle Scholar
  26. 26.
    Goldman, A.S., A.J. Ham Pong, and R.M. Goldblum. Host defenses: development and maternal contributions. Adv. Pediatr. 32: 71–100, 1985.PubMedGoogle Scholar
  27. 27.
    Gong, J.L., K.M. McCarthy, R.A. Rogers, and E.E. Schneeberger. Interstitial lung macrophages interact with dendritic cells to present antigenic peptides derived from particulate antigens to T cells. Immunology 81: 343–351, 1994.PubMedGoogle Scholar
  28. 28.
    Gould, S.J. and P.G. Isaacson. Bronchus-associated lymphoid tissue (BALT) in human fetal and infant lung. J. Pathol. 169: 229–234, 1993.PubMedCrossRefGoogle Scholar
  29. 29.
    Haas, W., P. Pereira, and S. Tonegawa. Gamma/delta cells. Annu. Rev. Immunol. 11: 637–685, 1993.PubMedCrossRefGoogle Scholar
  30. 30.
    Hashimoto, S., J.-F. Pittet, K. Hong, H. Folkesson, G. Bagby, L. Kobzik, C. Frevert, K. Watanabe, S. Tsurufuji, and J. Wiener-Kronish. Depletion of alveolar macrophages decreases neutrophil chemotaxis to Pseudomonas airspace infections. Am. J. Physiol. 270: L819–L828, 1996.PubMedGoogle Scholar
  31. 31.
    Havran, W.L. and J.P. Allison. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335: 443–445, 1988.PubMedCrossRefGoogle Scholar
  32. 32.
    Higashi, K., M. Naito, M. Takeya, M. Ando, S. Araki, and K. Takahashi. Ontogenetic development, differentiation, and phenotypic expression of macrophages in fetal rat lungs. J. Leukoc. Biol. 51: 444–454, 1992.PubMedGoogle Scholar
  33. 33.
    Hilfer, S.R. Development of terminal buds in the fetal mouse lung. Scan. Electron Microsc. 3: 1387–1401, 1983.Google Scholar
  34. 34.
    Hislop, A.A., J. Wharton, K.M. Allen, J.M. Polak, and S.G. Haworth. Immunohistochemical localization of peptide-containing nerves in human airways: age-related changes. Am. J. Respir. Cell Mol. Biol. 3: 191–198, 1990.PubMedCrossRefGoogle Scholar
  35. 35.
    Hofer, D. and D. Drenckhahn. Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry 98: 237–242, 1992.PubMedCrossRefGoogle Scholar
  36. 36.
    Holt, P.G., S. Haining, D.J. Nelson, and J.D. Sedgwick. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J. Immunol. 153: 256–261, 1994.PubMedGoogle Scholar
  37. 37.
    Holzer, P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide, and other neuropeptides. Neuroscience 24: 739–768, 1988.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoyt, R.F., Jr., N.A. McNelly, and S.P. Sorokin. Calcitonin gene-related peptide (CGRP) as regional mitogen for tracheobronchial epithelium of organ cultured fetal rat lungs. Am. Rev. Respir. Dis. 147: A498, 1993.CrossRefGoogle Scholar
  39. 39.
    Hoyt, R.F., Jr., S.P. Sorokin, E.M. McDowell, and N.A. McNealy. Neuroepithelial bodies and growth of the airway epithelium in developing hamster lung. Anat. Rec. 236: 15–22, 1993.PubMedCrossRefGoogle Scholar
  40. 40.
    Hsiao, L., K. Takahashi, M. Takeya, and T. Arao. Differentiation and maturation of macrophages into interdigitating cells and their multicellular complex formation in the fetal and postnatal rat thymus. Thymus 17: 219–235, 1991.PubMedGoogle Scholar
  41. 41.
    Ikuta, K., T. Kina, I. MacNeil, N. Uchida, B. Peault, Y.-H. Chien, and I.L. Weissman. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62: 863–874, 1990.PubMedCrossRefGoogle Scholar
  42. 42.
    Ikuta, K., N. Uchida, J. Friedman, and I.L. Weissman. Lymphocyte development from stem cells. Annu. Rev. Immunol. 10: 759–783, 1992.PubMedCrossRefGoogle Scholar
  43. 43.
    Ito, T., H. Kitamura, Y. Inayama, A. Nozawa, and M. Kanasawa. Uptake and intracellular transport of cationic ferritin in the bronchiolar and alveolar epithelia of the rat. Cell Tissue Res. 268: 335–340, 1992.PubMedCrossRefGoogle Scholar
  44. 44.
    Jadus, M.R., M.C.N. Irwin, M.R. Irwin, R.D. Horansky, S. Sekhon, K.A. Pepper, D.B. Kohn, and H.T. Wepsic. Macrophages can recognize and kill tumor cells bearing the membrane isoform of macrophage colony-stimulating factor. Blood 87: 5232–5241, 1996.PubMedGoogle Scholar
  45. 45.
    Kalina, M., R.J. Mason, and J.M. Shannon. Surfactant protein C is expressed in alveolar type II cells but not in Clara cells in rat lung. Am. J. Respir. Cell Mol. Biol. 6: 594–600, 1992.PubMedCrossRefGoogle Scholar
  46. 46.
    Kamani N.R. and S.D. Douglas. Structure and development of the immune system. In: Basic and Clinical Immunology, edited by D.P. Stites and A.I. Terr. Norwalk, CT: Appleton and Lange, 1991, p. 9–33.Google Scholar
  47. 47.
    Kansas, G.S. Selectins and their ligands: current concepts and controversies. Blood 88: 3259–3287, 1996.PubMedGoogle Scholar
  48. 48.
    Kansas, G.S. and M.O. Dailey. Expression of adhesion structures during B cell development in man. J. Immunol. 142: 3058–3062, 1989.PubMedGoogle Scholar
  49. 49.
    Kantor, A.B. and L.A. Herzenberg. Origin of murine B cell lineages. Annu. Rev. Immunol. 11: 501–538, 1993.PubMedCrossRefGoogle Scholar
  50. 50.
    Kradin, R.L., K.M. McCarthy, W. Xia, D. Lazarus, and E.E. Schneeberger. Accessory cells of the lung. I. Interferon-gamma increases Ia+ dendritic cells in the lung without augmenting their accessory activities. Am. J. Respir. Cell Mol. Biol. 4: 210–218, 1991.PubMedCrossRefGoogle Scholar
  51. 50a.
    Langevoort, H.L., Z.A. Cohn, J.G. Hirsch, J.H. Humphrey, W.G. Spector, and R. van Furth. The nomenclature of mononuclear phagocytic cells. In: Mononuclear Phagocytes, edited by R. van Furth. Philadelphia, PA: F.A. Davis, 1970, p. 1–6.Google Scholar
  52. 51.
    Lehnert, B.E., Y.E. Valdez, N.M. Lehnert, M.S. Park, and M.D. Englen. Stimulation of rat and murine alveolar macrophage proliferation by lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 11: 375–385, 1994.PubMedCrossRefGoogle Scholar
  53. 52.
    Lemaire, I., H. Yang, W. Lauzon, and N. Gendron. M-CSF and GM-CSF promote alveolar macrophage differentiation into multinucleated giant cells with distinct phenotypes. J. Leukoc. Biol. 60: 509–518, 1996.PubMedGoogle Scholar
  54. 53.
    Longworth, K.E., K.H. Albertine, and N.C. Staub. Ultrastructural quantification of pulmonary intravascular macrophages in newborn and 2-week-old lambs. Anat. Rec. 246: 238–244, 1996.PubMedCrossRefGoogle Scholar
  55. 54.
    Lukacs, N.W., T.J. Standiford, S.W. Chensue, R.G. Kunkel, R.M. Strieter, and S.L. Kunkel. C-C chemokine-induced eosinophil chemotaxis during allergic airway inflammation. J. Leukoc. Biol. 60: 573–578, 1996.PubMedGoogle Scholar
  56. 54a.
    Luster, A.D. Chemokines-chemotactic cytokines that mediate inflammation. New England J. Med. 338: 436–445, 1998.CrossRefGoogle Scholar
  57. 55.
    Lutter, R., B. Bruinier, B.E.A. Hol, F.H. Krouwels, T.A. Out, and H.M. Jansen. Physical interaction between lung epithelial cells and T lymphocytes. Adv. Exp. Med. Biol. 371a: 257–263, 1995.CrossRefGoogle Scholar
  58. 56.
    Massaro, G. Nonciliated bronchiolar epithelial (Clara) cells. In: Lung Cell Biology, edited by D. Massaro. New York: Marcel Dekker, 1989, p. 81–114.Google Scholar
  59. 57.
    McCarthy, K.M., J.L. Gong, J.R. Telford, and E.E. Schneeberger. Ontogeny of Ia+ accessory cells in fetal and newborn rat lung. Am. J. Respir. Cell Mol. Biol. 6: 349–356, 1992.PubMedCrossRefGoogle Scholar
  60. 58.
    McDonald, D.M. Neurogenic inflammation in the respiratory tract: actions of sensory nerve mediators on blood vessels and epithelium of the airway mucosa. Am. Rev. Respir. Dis. 136: S65–S72, 1987.PubMedCrossRefGoogle Scholar
  61. 59.
    McDowell, E.M., P.J. Becci, W. Schurch, and B.F. Trump. The respiratory epithelium. VII. Epidermoid metaplasia of hamster tracheal epithelium during regeneration following mechanical injury. J. Natl. Cancer Inst. 62: 995–1008, 1979.PubMedGoogle Scholar
  62. 60.
    McDowell, E.M., R.F. Hoyt, Jr., and S.P. Sorokin. Ontogeny of endocrine cells in the respiratory system of Syrian golden hamsters. II. Intrapulmonary airways and alveoli. Cell Tissue Res. 275: 157–167, 1994.PubMedCrossRefGoogle Scholar
  63. 61.
    McDowell, E.M., C. Newkirk, and B. Coleman. Development of hamster tracheal epithelium: I. A quantitative morphological study in the fetus. Anat. Rec. 213: 429–447, 1985.PubMedCrossRefGoogle Scholar
  64. 62.
    McDowell, E.M., C. Newkirk, and B. Coleman. Development of hamster tracheal epithelium: II. Cell proliferation in the fetus. Anat. Rec. 213: 448–456, 1985.PubMedCrossRefGoogle Scholar
  65. 63.
    Mebius, R.E., J. Bauer, A.J.T. Twisk, J. Breve, and G. Kraal. The functional activity of high endothelial venules: a role for the subcapsular sinus macrophages in the lymph node. Immunobiology 182: 277–291, 1991.PubMedCrossRefGoogle Scholar
  66. 64.
    Meneghetti, A., W.V. Cardoso, J.S. Brody, and M.C. Williams. Epithelial marker genes are expressed in cultured embryonic rat lung and in vivo with similar spatial and temporal patterns. J. Histochem. Cytochem. 44: 1173–1182, 1996.PubMedCrossRefGoogle Scholar
  67. 64a.
    Nagasawa, T., S. Hirota, K. Tachibana, N. Takakura, S. Nishikawa, Y. Kitamura, N. Yoshida, H. Kikutani, and T. Kishimoto. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382: 635–638, 1996.PubMedCrossRefGoogle Scholar
  68. 65.
    Otsuki, Y., Y. Ito, and S. Magari. Lymphocyte subpopulations in high endothelial venules and lymphatic capillaries of bronchus-associated lymphoid tissue (BALT) in the rat. Am. J. Anat. 184: 139–146, 1989.PubMedCrossRefGoogle Scholar
  69. 66.
    Pabst, R. Ia BALT a major component of the human lung immune system? Immunol. Today 13: 119–122, 1992.PubMedCrossRefGoogle Scholar
  70. 67.
    Pabst, R. and I. Gehrke. Is the bronchus-associated lymphoid tissue (BALT) an integral structure of the lung in normal mammals, including humans ? Am. J. Respir. Cell Mol. Biol. 3: 131–135, 1990.PubMedCrossRefGoogle Scholar
  71. 68.
    Payan, D.G. and E.J. Goetzl. Substance P receptor-dependent responses of leukocytes in pulmonary inflammation. Am. Rev. Respir. Dis. 136: S39–S43, 1987.PubMedCrossRefGoogle Scholar
  72. 69.
    Peault, B., I. Khazaal, and I.L. Weissman. In vitro development of B cells and macrophages from early mouse fetal thymocytes. Eur. J. Immunol. 24: 781–784, 1994.PubMedCrossRefGoogle Scholar
  73. 70.
    Pennington, D.G. The cellular biology of megakaryocytes. Blood Cells 5: 5–10, 1979.Google Scholar
  74. 71.
    Philip, G., A.M. Sanico, and A. Togias. Inflammatory cellular influx follows capsaicin nasal challenge. Am. J. Respir. Crit. Care Med. 153: 1222–1229, 1996.PubMedCrossRefGoogle Scholar
  75. 72.
    Plopper, C.G., J.L. Alley, C.J. Serabjit-Singh, and R.M. Philpott. Cytodifferentiation of the nonciliated bronchiolar epithelial (Clara) cell during rabbit lung maturation: an ultrastructural and morphometric study. Am. J. Anat. 167: 329–357, 1983.PubMedCrossRefGoogle Scholar
  76. 72a.
    Quackenbush, E.J., V. Aguirre, B.K. Wershil, and J.C. Gutierrez-Ramos. Eotaxin influences the development of embyronic hematopoietic progenitors in the mouse. J. Leukoc. Biol. 62: 661–666, 1997.PubMedGoogle Scholar
  77. 72b.
    Rossi, D.L., A.P. Vicari, K. Franz-Bacon, T.K. McClanahan, and A. Zlotnik. Identification through bioinformatics of two new macrophage proinflammatory human chemokines MIP 3a and MIP 3ß. J. Immunol. 158: 1033–1036, 1997.PubMedGoogle Scholar
  78. 73.
    Rutherford, M.S., A. Witsell, and L.B. Schook. Mechanisms generating functionally heterogeneous macrophages: chaos revisited. J. Leukoc. Biol. 53: 602–618, 1993.PubMedGoogle Scholar
  79. 74.
    Sarikas, S.N., R.F. Hoyt, Jr., and S.P. Sorokin. Small-granule APUD cells in relation to airway branching and growth: a quantitative, cartographic study in Syrian golden hamster. Anat. Rec. 213: 410–420, 1985.PubMedCrossRefGoogle Scholar
  80. 75.
    Sawyer, R.T. The ontogeny of pulmonary alveolar macrophages in parabiotic mice. J. Leukoc. Biol. 40: 347–354, 1986.PubMedGoogle Scholar
  81. 76.
    Schneeberger, E.E., D.V. Walters, and R.E. Olver. Development of intercellular junctions in the pulmonary epithelium of the foetal lamb. J. Cell Sci. 32: 307–324, 1978.PubMedGoogle Scholar
  82. 77.
    Shortman, K. and L. Wu. Early T lymphocyte progenitors. Annu. Rev. Immunol. 14: 29–47, 1996.PubMedCrossRefGoogle Scholar
  83. 78.
    Singh, G. and S.L. Katyal. An immunologic study of the secretory products of rat Clara cells. J. Histochem. Cytochem. 32: 49–54, 1984.PubMedCrossRefGoogle Scholar
  84. 79.
    Smith, C.J., J.N. Barker, R.W. Morris, C.M. MacDonald, and T.H. Lee. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J. Immunol. 151: 3274–3282, 1993.PubMedGoogle Scholar
  85. 80.
    Sorokin, S.P. A study of development in organ cultures of mammalian lungs. Dev. Biol. 3: 60–83, 1961.CrossRefGoogle Scholar
  86. 81.
    Sorokin, S.P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3: 207–230, 1968.PubMedGoogle Scholar
  87. 82.
    Sorokin, S.P. and R.F. Hoyt, Jr. Pure population of non-monocyte-derived macrophages arising in organ cultures of embryonic rat lungs. Anat. Rec. 217: 35–52, 1987.PubMedCrossRefGoogle Scholar
  88. 83.
    Sorokin, S.P. and R.F. Hoyt, Jr. On the supposed function of neuroepithelial bodies in adult mammalian lungs. News Physiol. Sci. 5: 89–95, 1990.Google Scholar
  89. 84.
    Sorokin, S.P., R.F. Hoyt, Jr., D.G. Blunt, and N.A. McNelly. Macrophage development. II. Early ontogeny of macrophage populations in brain, liver, and lungs of rat embryos as revealed by a lectin marker. Anat. Rec. 232: 527–550, 1992.PubMedCrossRefGoogle Scholar
  90. 85.
    Sorokin, S.P., R.F. Hoyt, Jr., and M.M. Grant. Development of macrophages in the lungs of fetal rabbits, rats, and hamsters. Anat. Rec. 208: 103–121, 1984.PubMedCrossRefGoogle Scholar
  91. 86.
    Sorokin, S.P., R.F. Hoyt, Jr., and N.A. McNelly. Non-immune phagocytosis by “pre-medullary” lung macrophages: effects of concanavalin A, tuftsin, and macrophage-inhibitory peptide. Anat. Rec. 223: 55–61, 1989.PubMedCrossRefGoogle Scholar
  92. 87.
    Sorokin, S.P., R.F. Hoyt, Jr., and N.A.F. McNelly. Factors influencing fetal macrophage development: I. Reactions of the tumor necrosis factor-a cascade and their inhibitors. Anat. Rec. 246: 481–497, 1996.PubMedCrossRefGoogle Scholar
  93. 88.
    Sorokin, S.P., R.F. Hoyt, Jr., W.R. Reenstra, and N.A.F. McNally. Factors influencing fetal macrophage development: III. Immunocytochemical localization of cytokines and time-resolved expression of differentiation markers in organ-cultured rat lungs. Anat. Rec. 248: 93–103, 1997.PubMedCrossRefGoogle Scholar
  94. 89.
    Sorokin, S.P., R.F. Hoyt, Jr., and M. J. Shaffer. Ontogeny of neuroepithelial bodies: correlations with mitogenesis and innervation. Microsc. Res. Tech. 37: 43–61, 1997.Google Scholar
  95. 90.
    Sorokin. S.P., L. Kobzik, R.F. Hoyt, Jr., and J.J. Godleski. Development of surface membrane characteristics of “premedullary” macrophages in organ cultures of embryonic rat and hamster lungs. J. Histochem. Cytochem. 37: 365–376, 1989.PubMedCrossRefGoogle Scholar
  96. 91.
    Sorokin, S.P., N.A. McNelly, D.G. Blunt, and R.F. Hoyt, Jr. Macrophage development. III. Transformation of pulmonary macrophages from precursors in fetal lungs and their later maturation in organ culture. Anat. Rec. 232: 551–571, 1992.PubMedCrossRefGoogle Scholar
  97. 92.
    Sorokin, S.P., N.A. McNelly, and R.F. Hoyt. Jr. Macrophage development. IV. Effects of blood factors on macrophages from prenatal rat lung cultures. Anat. Rec. 233: 415–428, 1992.PubMedCrossRefGoogle Scholar
  98. 93.
    Sorokin, S.P., N.A. McNelly, and R.F. Hoyt, Jr. Exogenous cytokines enhance survival of macrophages from organ cultured embryonic rat tissues. Anat. Rec. 240: 398–406, 1994.PubMedCrossRefGoogle Scholar
  99. 94.
    Sorokin, S.P., N.A.F. McNelly, and R.F. Hoyt, Jr. Factors influencing fetal macrophage development. II. Effects of the PDGF subfamily of protein-tyrosine kinase receptor ligands as studied in organ-cultured rat lungs. Anat. Rec. 246: 498–506, 1996.PubMedCrossRefGoogle Scholar
  100. 95.
    Stall, A.M., S. Adams, L.A. Herzenberg, and A.B. Kantor. Characteristics and development of the murine B-lb (Ly-1 B Sister) cell population. Ann. N.Y. Acad. Sci. 651: 33–43, 1992.PubMedCrossRefGoogle Scholar
  101. 96.
    Stein, J., G.V. Borzillo, and C.W. Rettenmier. Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood 76: 1308–1314, 1990.PubMedGoogle Scholar
  102. 97.
    Stoltenberg, L., P.S. Thrane, and T.O. Rognum. Development of immune response markers in the trachea in the fetal period and the first year of life. Pediatr. Allergy Immunol. 4: 13–19, 1993.PubMedCrossRefGoogle Scholar
  103. 98.
    Strum, J.M., G. Singh, S.L. Katyal, and E.M. McDowell. Immunocytochemical localization of Clara cell protein by light and electron microscopy in conducting airways of fetal and neonatal hamster lung. Anat Rec. 227: 77–86, 1990.PubMedCrossRefGoogle Scholar
  104. 99.
    Suda, T., R.J. Callahan, R.A. Wilkenson, N. van Rooijen, and E.E. Schneeberger. Interferon-gamma reduces Ia+ dendritic cell traffic to the lung. J. Leukoc. Biol. 60: 519–527, 1996.PubMedGoogle Scholar
  105. 100.
    Szabolcs, P., D. Avigan, S. Gezelter, D.H. Ciocon, M.A. Moore, R.M. Steinman, and J.W. Young. Dendritic cells and macrophages can mature independently from a human bone marrow-derived, post-colony-forming unit intermediate. Blood 87: 4520–4530, 1996.PubMedGoogle Scholar
  106. 101.
    Takahashi, K. Heterogeneity of macrophage development, differentiation, and maturation. In: Lymphoreticular Cells, Fundamentals and Pathology, edited by K. Takahashi and S.-H. Kim. Kumamoto: Lymphoreticular Cell Foundation, 1992, p. 1–21.Google Scholar
  107. 102.
    Takahashi, K. and M. Naito. Development, differentiation, and proliferation of macrophages in the rat yolk sac. Tissue Cell 25: 351–362, 1993.PubMedCrossRefGoogle Scholar
  108. 103.
    Tarling, J.D., H. Lin, and S. Hsu. Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies. J. Leukoc. Biol. 45: 87–96, 1987.Google Scholar
  109. 104.
    Tarlinton, D. B-cell differentiation in the bone marrow and the periphery. Immunol. Rev. 137: 203–229, 1994.PubMedCrossRefGoogle Scholar
  110. 105.
    Tavassoli, M. Embryonic and fetal hemopoiesis: an overview. Blood Cells 17: 269–281, 1991.PubMedGoogle Scholar
  111. 106.
    Ten Have-Opbroek, A.A.W. and E.C.P. de Vries. Clara cell differentiation in the mouse: ultrastructural morphology and cytochemistry for surfactant protein A and Clara cell 10 kD protein. Microsc. Res. Tech. 26: 400–411, 1993.PubMedCrossRefGoogle Scholar
  112. 107.
    Thompson, A.B., R.A. Robbins, D.J. Romberger, J.H. Sisson, J.R. Spurzem, H. Teschler, and S.I. Rennard. Immunological functions of the pulmonary epithelium. Eur. Respir. J. 8: 127–149, 1995.PubMedCrossRefGoogle Scholar
  113. 108.
    Uddman, R., A. Lutz, and F. Sundler. Occurrence and distribution of calcitonin gene-related peptide in the mammalian respiratory tract and middle ear. Cell Tissue Res. 241: 551–555, 1985.PubMedCrossRefGoogle Scholar
  114. 109.
    van Deurs, B. and C. Ropke. The postnatal development of high-endothelial venules in lymph nodes of mice. Anat. Rec. 181: 659–678, 1975.PubMedCrossRefGoogle Scholar
  115. 110.
    van Iwaarden, F., B. Welmers, J. Verhoef, H.P. Haagsman, and L.M.G. van Golde. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 2: 91–98, 1990.PubMedCrossRefGoogle Scholar
  116. 111.
    von Gaudecker, B. The development of the human thymus microenvironment. In: The Human Thymus, edited by H.K. Hermelink. Berlin: Springer-Verlag, 1986, p. 1–14.CrossRefGoogle Scholar
  117. 112.
    Wang, A., L. Patrone, J.M. McDonald, and D. Sheppard. Expression of the integrin subunit a9 in the murine embryo. Dep. Dyn. 204: 421–431, 1995.CrossRefGoogle Scholar
  118. 113.
    Warner, A.E., R.M. Molina, and J.D. Brain. Uptake of blood-borne bacteria by pulmonary intravascular macrophages and consequent inflammatory responses in sheep. Am. Rev. Respir. Dis. 136: 683–690, 1987.PubMedCrossRefGoogle Scholar
  119. 113a.
    Wiktor-Jedrzejczak, W., and S. Gordon. Cytokine regulation of the macrophage (MO) system studied using the colony stimulating factor-l-deficient op/op mouse. Physiol. Rev. 76: 927–947, 1996PubMedGoogle Scholar
  120. 114.
    Wong, J., J.R. Fineman, and M.A. Heymann. The role of endothelin and endothelin receptor subtypes in regulation of fetal pulmonary vascular tone. Pediatr. Res. 35: 664–670, 1994.PubMedCrossRefGoogle Scholar
  121. 115.
    Youngson, C., C. Nurse, H. Yeger, and E. Cutz. Oxygen sensing in airway chemoreceptors. Nature 365: 153–155, 1993.PubMedCrossRefGoogle Scholar
  122. 116.
    Zhou, L., L. Lim, R.H. Costa, and J.A. Whitsett. Thyroid transcription factor-1, hepatocyte nuclear factor 313, surfactant protein B, C, and Clara cell secretory protein in developing mouse lung. J. Histochem. Cytochem. 44: 1183–1193, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 1999

Authors and Affiliations

  • Sergei P. Sorokin
  • Richard F. HoytJr.
  • Nancy A. F. McNelly

There are no affiliations available

Personalised recommendations