Role of EDRF/NO in Chronic High Coronary Blood Flow States During Myocardial Dysfunction and Failure

  • Thomas H. Hintze
  • Jie Wang
  • Nahid Seyedi
  • Michael S. Wolin
Part of the Clinical Physiology Series book series (CLINPHY)


Historically, the changes in cardiovascular function and particularly those that occur in the heart during the development of heart failure have been attributed to alterations in the contractile state of the myocardium (4, 68). Thus either chronic pressure or volume overload are characterized by a reduced inotropic state as shown in papillary muscles removed from failing hearts (77, 78), reduced cardiac contractile indices in experimental animals in vivo (73), and reduced ejection fraction or other measures of myocardial contractility in man (4). At the cellular level, there may be disruption of mitochondria, disarray of myofilaments, focal or diffuse ischemic lesions, concentric or eccentric hypertrophy, depending upon the cause of the myocardial dysfunction (50). This large body of evidence has suggested that the primary insult in heart failure of various etiologies is an alteration in contractile function due primarily to myocyte dysfunction (77, 78). In fact, one of the most active areas of recent investigation is the use of relaxation indexes to uncover diastolic dysfunction in the hope of early detection of potential functional abnormalities in the myocardium (29). All of the above underscore the emphasis on the contractile failure of the myocardium as the progenitor of heart failure.


Heart Failure Coronary Blood Flow Myocardial Dysfunction Coronary Circulation Inotropic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, P. W., T. P. Stopps, S. E. Ford, and A. J. DeboLD. Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulat. 74: 1075–1084, 1986.CrossRefGoogle Scholar
  2. 2.
    Bassenge, E., and R. Busse. Endothelial modulation of coronary tone. Prog. Cardiovasc. Dis. 30: 349–380, 1988.PubMedCrossRefGoogle Scholar
  3. 3.
    Belloni, F. L., J. Wang, and T. H. Hintze. Adenosine causes bradycardia in pacing-induced heart failure in conscious dogs. Circulat. 85: 1118–1124, 1992.CrossRefGoogle Scholar
  4. 4.
    Braunwald, E., J. Ross, and E. H. Sonnenblick. Mechanisms of Contraction of the Normal and Failing Heart. Boston: Little Brown, Inc., 1976.Google Scholar
  5. 5.
    Chester, A. H., G. S. O’Neil, S. Moncada, S. Tadjkarimi, and M. H. Yacour. Low basal and stimulated release of nitric oxide in atherosclerostic epicardial coronary arteries. Lancet 336: 897–900, 1990.PubMedCrossRefGoogle Scholar
  6. 6.
    Chow, E., J. C. Woodward, and D. J. Farrar. Rapid ventricular pacing in pigs. An experimental model of congestive heart failure. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H1603 - H1605, 1990.Google Scholar
  7. 7.
    Chu, A., D. E. Chambers, C. Lin, W. D. Kuehl, and F. R. Coss. Nitric oxide modulates epicardial coronary artery basal vasomotor tone in awake dogs. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H1250 - H1254, 1990.Google Scholar
  8. 8.
    Chu, A., C. C. Lin, D. E. Chambers, W. D. Kuehl, R. M. J. Palmer, S. Moncada, and F. R. Cobb. Effects of inhibition of nitric oxide formation on basal tone and endothelium dependent responses of coronary arteries in awake dogs. J. Clin. Invest. 87: 1964–1968, 1991.PubMedCrossRefGoogle Scholar
  9. 9.
    Coleman, H. N., R. R. Taylor, P. E. Pool, G. H. Whipple, J. W. Covell, J. Ross, and E. Braunwald. Congestive heart failure following chronic tachycardia. Am. Ht. J. 81: 790–798, 1971.CrossRefGoogle Scholar
  10. 10.
    Cox, D. A., T. H. Hintze, and S. F. Vatner. Effects of acetylcholine on large and small coronary arteries in conscious dogs. J. Pharm. Exp. Therap. 225: 764–769, 1983.Google Scholar
  11. 11.
    Cox, D. A., J. A. Vita, C. B. Treasure, D. Fish, R. W. Alexander, P. Ganz, and A. P. Selwyn. Atherosclerosis impairs flow-mediated dilation of coronary arteries in man. Circulat 80: 458–465, 1989.CrossRefGoogle Scholar
  12. 12.
    Creager, M. A., J. P. Cooke, M. E. Mendelsohn, S. J. Gallagher, S. M. Coleman, J. Los-Calzo, and V. Dzau. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J. Clin. Invest. 86: 228–234, 1990.Google Scholar
  13. 13.
    Davies, P. How do vascular endothelial cells respond to flow? NIPS 4: 22–25, 1989.Google Scholar
  14. 14.
    Dewey, C. F., S. R. Bussolari, M. A. Gimbrone, and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear. J. Biomech. Engin. 103: 177–185, 1991.CrossRefGoogle Scholar
  15. 15.
    Drexler, H., and W. Lu. Endothelial dysfunction of hindquarter resistance vessels in experimental heart failure. Am. J. Physiol. 262 (Heart Circ. Physiol. 31 ): H1640 - H1645, 1992.Google Scholar
  16. 16.
    Drexler, H., A. Zeher, H. Wollschlager, T. Meinertz, H. Just, and T. Bonzel. Flow dependent coronary artery dilation in humans. Circulat. 80: 466–474, 1989.CrossRefGoogle Scholar
  17. 17.
    Drexler, H., E. Hablawetz, W. Lu, U. Riede, and A. Christes. Effects of inhibition of nitric oxide formation on regional blood flow in experimental myocardial infarction. Circulat. 86: 255–262, 1992.CrossRefGoogle Scholar
  18. 18.
    Drexler, H., D. Hayoz, T. Munzele, B. Hornig, H. Just, H. R. Brunner, and R. Zelis. Endothelial function in chronic congestive heart failure. Am. J. Cardiol. 69: 1596–1601, 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Elsner, D., A. Muntze, E. P. Kromer, and G. A. A. Reigger. Systemic vasoconstriction induced by inhibition of nitric oxide synthesis is attenuated in conscious dogs with heart failure. Cardiovasc. Res. 25: 438–440, 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Feigl, E. O. Reflex parasympathetic coronary vasodilation elicited from cardiac receptors in the dog. Circ. Res. 175–182, 1975.Google Scholar
  21. 21.
    Forstermann, U., A. Mugge, U. Alheid, A. Haverich, and J. C. Frolich. Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ. Res. 62: 185–190, 1988.PubMedCrossRefGoogle Scholar
  22. 22.
    Furchgott, R. F., and J. V. Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature Lond. 288: 373–376, 1980.PubMedCrossRefGoogle Scholar
  23. 23.
    Furchgott, R. F. Role of the endothelium in responses of vascular smooth muscle. Circ. Res. 53: 557–573, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    GAw, A. J., J. Aberdeen, P. P. A. Humphrey, R. M. Wadsworth, and G. Burnstock. Relaxation of sheep cerebral arteries by vasoactive intestial polypeptide and neurogenic stimulatin: inhibition by nitro-L-arginine in endothelium denuded vessels. Br. J. Pharmacol. 102: 567–572, 1991.PubMedCrossRefGoogle Scholar
  25. 25.
    Gerritsen, M. E., and M. P. Printz. Sites of prostaglandin synthesis in the bovine heart and isolated bovine coronary microvessels. Circ. Res. 49: 1152–1163, 1981.PubMedCrossRefGoogle Scholar
  26. 26.
    Gerova, M., E. Barta, and J. Gero. Sympathetic control of major coronary artery diameter in the dog. Circ. Res. 44: 459–467, 1979.PubMedCrossRefGoogle Scholar
  27. 27.
    Gibson, A., S. Mirzazdell, A. J. Hobbs, and P. K. Moore. N-monomethylarginine and nitroL-arginine inhibit non-adrenergic, noncholinergic relaxation of the mouse anoccygeus muscle. Br. J. Pharmacol. 99: 602–606, 1990.PubMedCrossRefGoogle Scholar
  28. 28.
    Hayashi, Y., H. Tomoike, K. Nagasawa, A. Yamada, H. Nishijima, H. Adachi, and M. Nakamura. Functional and anatomical recovery of endothelium after denudation of coronary artery. Am. J. Physiol. 254 (Heart Circ. Physiosl. 23 ): H1081 — H1090, 1987.Google Scholar
  29. 29.
    Hess, O. M., G. Osakada, J. F. Lavelle, K. P.Gallagher, W. S.Kemper, and J. Ross. Diastolic wall stiffness and ventricular relaxation during partial and complete coronary occlusion to conscious dogs. Circ. Res. 52: 387–400, 1983.Google Scholar
  30. 30.
    Hilton, S. M. A peripheral conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasdilation in skeletal muscle. J. Physiol. (Lond.) 149: 93–111, 1959.Google Scholar
  31. 31.
    Hintze, T. H., and S. F. Vatner. Reactive dilation of large coronary arteries following brief coronary artery occlusion in conscious dogs. Circ. Res. 54: 50–57, 1984.PubMedCrossRefGoogle Scholar
  32. 32.
    Hintze, T. H., and S. F. Vatner. Cardiac dynamics during hemorrhage: relative unimportance of adrenergic inotropic responses. Circ. Res. 50: 705–713, 1982.PubMedCrossRefGoogle Scholar
  33. 33.
    Hintze, T. H., M. R. Kichuk, H. Stern, and G. Kaley. Dilation of large coronary arteries in conscious dogs by prostacyclin. Adv. Prost. Thromb. Leukotr. Res. 13: 341–344, 1985.Google Scholar
  34. 34.
    Hintze, T. H., J. Wang, M. Patel, M. Schustek, M. Ochoa, R. Dean, F. Chiruzzo, and G. Zeballios. Dynamics of atrial peptide secretion in the coronary circulation of the conscious dog. Circ. Res. 67: 609–614, 1990.PubMedCrossRefGoogle Scholar
  35. 35.
    Holtz, J., U. Forstermann, U. Pohl, M. Geisler, and E. Bassange. Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclo-oxygenase inhibition. J. Cardiouasc. Pharmacol. 6: 1161–1169, 1984.Google Scholar
  36. 36.
    Howard, R. J., T. P. Stopps, G. W. Moe, A. Gottlieb, and P. W. Armstrong. Structural and functional analysis in a canine model. Can. J. Physiol. Pharmacol. 66: 1505–1512, 1988.PubMedCrossRefGoogle Scholar
  37. 37.
    Hull, S. S., L. Kaiser, M. D. Jaffe, and H. V. Sparks. Endothelium-dependent flow mediated dilation in the canine femoral and saphenous arteries. Blood Vessels 23: 183–198, 1986.PubMedGoogle Scholar
  38. 38.
    Ignarro, L. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ. Res. 65: 1–21, 1989.PubMedCrossRefGoogle Scholar
  39. 39.
    Ingebrigtsen, R., and S. Leraand. Dilitation of a medium-sized artery immediately after local changes in blood pressure and flow as measured by ultrasonic techniques. Acta. Physiol. Scand. 79: 552–558, 1970.PubMedCrossRefGoogle Scholar
  40. 40.
    Kaiser, L., R. C. Spickard, and N. B. Olivier. Heart failure depresses endothelium-dependent responses in canine femoral arteries. Am. J. Physiol. 256 (Heart Circ. Physiol. 25 ): H962 — H967, 1989.Google Scholar
  41. 41.
    Kaiser, H., S. S. Hull, and H. V. Sparks. Methylene blue and ETYA block flow-dependent dilation in canine femoral artery. Am. J. Physiol. 250: H974 — H981, 1986.PubMedGoogle Scholar
  42. 42.
    Kaiser, L., and H. V. Sparks. Mediation of flow-dependent arterial vasodilation by endothelial cells. Circ. Shock. 18: 109–114, 1986.PubMedGoogle Scholar
  43. 43.
    Koller, A., and G. Kaley. Flow velocity-dependent regulation of microvascular resistance in vivo. Microcirc.Endo. lymph. 5: 519–529, 1989.Google Scholar
  44. 44.
    KUso, S. H., T. S. Rector, A. J. Bank, R. E. Williams, and S. M. Heifetz. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulat. 84: 1589 1596, 1991.Google Scholar
  45. 45.
    Lie, M., O. M. Sejejrstad, and F. Kill. Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ. Res. 271: 727–737, 1970.CrossRefGoogle Scholar
  46. 46.
    Ludmeier, P. I., A. R. Selwyn, T. L. Shook, R. R. Wayne, G. H. Mudge, R. W. Alexander, and P. Ganz. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. New. Engl. J. Med. 314: 1046–1051, 1986.CrossRefGoogle Scholar
  47. 47.
    Macho, R., T. H. Hintze, and S. F. Vatner. Regulation of large coronary vessels by changes in myocardial metabolic demand in conscious dogs. Circ. Res. 49: 594–599, 1981.PubMedCrossRefGoogle Scholar
  48. 48.
    Main, J. S., C. Forster, and P. W. Armstrong. Inhibitory role of the coronary arterial endothelium to alpha adrenergic stimulation in experimental heart failure. Circ. Res. 68: 940–946, 1991.PubMedCrossRefGoogle Scholar
  49. 49.
    Mahler, F., J. W. Covell, R. E. O’Rourke, and J. Ross. Effects of acute changes in loading and inotropic state on left ventricular performance and contractility measures in the conscious dog. Am. J. Cardiol. 35: 626–634, 1975.PubMedCrossRefGoogle Scholar
  50. 50.
    Meerson, F. Z., T. A. Zaletayeva, and S. S. Lagutchev. Structure and mass of mitochondria in the process of compensatory hyperfunction and hypertrophy of the heart. Exp. Cell. Res. 36: 568–578, 1964.PubMedCrossRefGoogle Scholar
  51. 51.
    Miller, V., L. Aarhus, and R. M. Vanhoutte. Modulation of endothelium-dependent responses by chronic alterations of blood flow. Am. J. Physiol. 251 (Heart Circ. Physiol. 20 ): H520 - H527, 1986.Google Scholar
  52. 52.
    Miller, V. M., and R M. Vanhoutte. Enhanced release of endothelium derived relaxing factor by chronic increases in blood flow. Am. J. Physiol. 255 (Heart Circ. Physiol. 24 ): H446 - H451, 1988.Google Scholar
  53. 53.
    Mitchell, K. H., J. R Gilmore, and S. J. Sarnoff. The transport function of the atria. Am. J. Cardiol. 21: 237–247, 1962.CrossRefGoogle Scholar
  54. 54.
    Moe, G. W., T. R Stopps, C. Angus, C. Forester, A. J. Debold, and P. W. Armstrong. Alteration in serum sodium in relation to atrial natriuretic factor and other neuroendocrine parameters in experimental pacing induced heart failure. J. Am. Coll. Cardiol. 13: 173–179, 1989.PubMedCrossRefGoogle Scholar
  55. 55.
    Moe, G. W., T. P. Stopps, R. J. Howard, and P. W. Armstrong. Early recovery from heart failure: Insights into the pathogenesis of experimental chronic pacing induced heart failure. J. Lab. Clin. Med. 112: 426–432, 1989.Google Scholar
  56. 56.
    Moncada, S. The L-arginine: nitric oxide pathway. Acta. Physiol. Stand. 145: 201–227, 1992.CrossRefGoogle Scholar
  57. 57.
    Murray, R. A., and S. F. Vatner. Abnormal coronary vascular response to exercise in dogs with severe right ventricular hypertrophy. J. Clin. Invest. 67: 1314–1323, 1981.PubMedCrossRefGoogle Scholar
  58. 58.
    Murray, P. A., and S. F. Vatner. Reduction in maximum vasodilator capacity in conscious dogs with severe right ventricular hypertrphy. Circ. Res. 48: 25–31, 1981.PubMedCrossRefGoogle Scholar
  59. 59.
    Myers, R. R., R. Guerra, and D. G. Harrison. Release of NO and Edrf from cultured bovine aortic endothelial cells. Am. J. Physiol. 256 (Heart Circ. Physiol. 25 ): H1030 - H1037, 1989.Google Scholar
  60. 60.
    Olsson, R. A., and D. E. Gregg. Myocardial reactive hyperemia in the unanesthetized dog. Am. J. Physiol. 208: 224–230, 1968.Google Scholar
  61. 61.
    Olsson, R. A. Myocardial reactive hyperemia. Circ. Res. 37: 263–270, 1975.PubMedCrossRefGoogle Scholar
  62. 62.
    Ontkean, M., R. Gay, and B. Greenberg. Diminished endothelium-derived relaxing factor activity in an experimental model of chronic heart failure. Circ. Res. 69: 1088–1096, 1991.PubMedCrossRefGoogle Scholar
  63. 63.
    Palmer, R. M., J. D. S. Ashton, and S. Moncada. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature Lond. 333: 664–666, 1988.PubMedCrossRefGoogle Scholar
  64. 64.
    Palmer, R. M., A. G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium derived relaxing factor. Nature Lond. 327: 524–526, 1987.PubMedCrossRefGoogle Scholar
  65. 65.
    Patel, M. B., and T. H. Hintze. Atriopeptins regulate myocardial function via the Frank-Starling mechanism in conscious dogs. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H183 - H190, 1990.Google Scholar
  66. 66.
    Pohl, U., J. Holtz, R. Busse, and E. Bassenge. crucial role of the endothelium in the vasodilator response to increased blood flow in vivo. Hypertension 8: 27–44, 1986.Google Scholar
  67. 67.
    Rees, D. M., R. M. J. Palmer, R. Schultz, H. F. Hodson, and S. Moncada. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol. 101: 746–752, 1990.PubMedCrossRefGoogle Scholar
  68. 68.
    Ross, J. Adaptations of the left ventricle to chronic volume-overload. Circ. Res. 35 (Suppl 2): 64–69, 1974.PubMedGoogle Scholar
  69. 69.
    Rubanyi, G. M., J. C. Romero, and R. M. Vanhoutte. Flow induced release of endothelium derived relaxing factor. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H1145 - H1149, 1986.Google Scholar
  70. 70.
    Sagawa, K. The end-systolic pressure-volume relation of the ventricle: defination, notifications and clinical use. Circulation 63: 1223–1227, 1981.PubMedCrossRefGoogle Scholar
  71. 71.
    Sasayama, S., H. AsAnoi, and S. IsHizaka. Mechanics of contraction and relaxation of the ventricle in experimental heart failure produced by rapid ventricular pacing in the conscious dog. Eu. Heart. J. 12 (Suppl C): 35–41, 1991.CrossRefGoogle Scholar
  72. 72.
    Seyedi, N., J. Wang, W. O. Shen, M. E. Gerritsen, M. Wolin, and T. H. Hintze. Reduction in release of nitrite from microvessels of the left ventricle and large coronary arteries during heart failure. Circulat. 86: I - 763, 1992.Google Scholar
  73. 73.
    Shannon, R. P., K. Komamura, B. S. Stambler, M. Bigaud, W. T. Manders, and S. F. Vatner. Alterations in myocardial contractility in conscious dogs with dilated cardiomyopathy. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H1903 — H1911, 1991.Google Scholar
  74. 74.
    Shannon, R. P., K. Kiuchi, K. Komamura, M. Bigaud, S. F. Vatner, and K. Morgan. Depressed intrinsic vascular tone in the development of heart failure. Circulat. 86 (Suppl I): I - 225, 1992.Google Scholar
  75. 75.
    Shen, W. Q., G. A. Zeballos, and T. H. Hintze. Ventricular tissue is not the primary source of plasma Anf during heart failure. Circulat. 86: I - 545, 1992.Google Scholar
  76. 76.
    Smiesko, V., J. Koekik, and S. Dolezel. Role of the endothelium in the control of arterial diameter by blood flow. Blood Vessels 22: 247–251, 1985.PubMedGoogle Scholar
  77. 77.
    Spann, J. F., R. A. Buccino, E. H. Sonnenblick, and E. Braunwald. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ. Res. 21: 341–354, 1967.PubMedCrossRefGoogle Scholar
  78. 78.
    Spann, J. F., J. Covell, D. L. Eckberg, E. H. Sonnenblick, J. Ross, and E. Braunwald. Contractile performance of the hypertrophied and chronically failing cat heart. Am. J. Physiol. 223: 1150–1157, 1972.Google Scholar
  79. 79.
    Spinale, F. G., J. L. Zellner, M. Tomita, F. A. Crawford, And M. R. Ziles. Relation between ventricular and myocyte remodeling with the development and regression of supraventricular tachycardia-induced cardiomyopathy. Circ. Res. 69: 1058–1067, 1991.PubMedCrossRefGoogle Scholar
  80. 80.
    Spinale, F. G., R. Tanaka, F. A. Crawford, and M. R. Zile. Changes in myocardial blood flow during development of and recovery from tachycardia-induced cardiomyopathy. Circulat. 85: 717–719, 1992.CrossRefGoogle Scholar
  81. 81.
    Tomanek, R. J., P. J. Palmer, G. L. Peiffer, K. L. Schreiber, C. L. Eastham, and M. L. Marcus. Morphometry of canine coronary arteries, arterioles and capillaries during hypertension and left ventricular hypertrophy. Circ. Res. 58: 38–46, 1986.PubMedCrossRefGoogle Scholar
  82. 82.
    Treasure, C. B., J. A. Vita, D. A. Cox, R. D. FisH, J. B. Gordon, G. H. Mudge, W. S. CO-Lucci, M. G. ST. John Sutton, A. P. Selwyn, R. W. Alexander, and P. Ganz. Endothelium-dependent dilation of coronary microvasculature is impaired in dilated cardiomyopathy. Circulat. 81: 772–229, 1990.Google Scholar
  83. 83.
    Uvnas, B. Sympathetic vasodilator system and blood flow. Acta Physiol. Scand. 23: 69–76, 1954.Google Scholar
  84. 84.
    Vallance, P., A. Leone, A. Calver, J. Collier, and S. Moncada. Accumulation of an endogeneous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 572–575, 1992.PubMedCrossRefGoogle Scholar
  85. 85.
    Vane, J., E. Anggard, and R. Botting. Regulatory functions of the vascular endothelium. N. Engl. J. Med. 323: 27–36, 1990.PubMedCrossRefGoogle Scholar
  86. 86.
    Vanhoutte, P. M. Endothelium and control of vascular function. Hypertension 13: 658667, 1989.Google Scholar
  87. 87.
    Wang, J., G. A. Zeballos, G. Kaley, and T. H. Hintze. Dilation and constriction of large and small coronary arteries in conscious dogs by endothelin. Am. J. Physiol. 261 (Heart Circ. Physiol. 30 ): H1379 — H1386, 1991.PubMedGoogle Scholar
  88. 88.
    Wangler, R. D., K. G. Peters, M. L. Marcus, and R. J. Tomanek. Effects of duration and severity of arterial hypertension and cardiac hypertrophy on coronary vasdilator reserve. Circ. Res. 51: 10–18, 1982.PubMedCrossRefGoogle Scholar
  89. 89.
    Weber, K. T., R. Pick, M. A. Silver, G. W. Moe, J. S. Janicki, I. H. Zucker, and P. W. Armstrong. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulat. 82: 1387–1401, 1990.CrossRefGoogle Scholar
  90. 90.
    Wilson, J., D. Weiner, L. Fink, and N. Ferraro. Vasodilatory behavior of skeletal muscle arterioles in patients with nonedematous heart failure. Circulat. 74: 775–779, 1986.CrossRefGoogle Scholar
  91. 91.
    Wilson, J. R., P. Douglas, W. F. Hickey, V. Lanoce, N. Ferraro, A. Muhammed, and N. Reichek. Experimental heart failure produced by rapid ventricular pacing in the dog: cardiac effects. Circulat. 75: 857–867, 1987.CrossRefGoogle Scholar
  92. 92.
    Young, M. A., and S. F. Vatner. Blood flow and endothelium mediated vasomotion of iliac arteries in conscious dogs. Circ. Res. 61: (Suppl. II) 88–93, 1987.Google Scholar

Copyright information

© American Physiological Society 1995

Authors and Affiliations

  • Thomas H. Hintze
  • Jie Wang
  • Nahid Seyedi
  • Michael S. Wolin

There are no affiliations available

Personalised recommendations