Red Cell Function at Extreme Altitude

  • Robert M. Winslow
Part of the Clinical Physiology book series (CLINPHY)


the relationship between the amount of oxygen bound to hemoglobin (saturation) and the oxygen physically dissolved in solution [oxygen tension (Po2)] under equilibrium conditions is the familiar oxygen equilibrium curve (OEC) of hemoglobin. Its position is often denoted by the value P50, the Po2 at which saturation is 50%. If oxygen affinity increases, the OEC shifts left and P50 is reduced. If oxygen affinity decreases, the OEC shifts right and P50 is increased. The principal effectors of hemoglobin function [Ht, 2,3-diphosphoglycerate (2,3-DPG), and carbon dioxide] all shift the OEC to the right.


High Altitude Base Excess Oxygen Affinity Corpuscular Hemoglobin Concentration Arterial Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BARCROFT, J., C. A. BINGER, A. V. BOCK, J. H. DOG-GART, H. S. FORBES, G. HARROP, C. MEAKINS, AND A. C. REDFIELD. Observations upon the effect of high altitude on the physiological processes of the human body carried out in the Peruvian Andes chiefly at Cerro de Pasco. Philos. Trans. R. Soc. London Ser. B 211: 351, 1922.CrossRefGoogle Scholar
  2. 2.
    BENESCH, R., AND R. E. BENESCH. The effect of organic phosphates from human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun. 26: 659–667, 1968.Google Scholar
  3. 3.
    BOLTON, W., AND M. F. PERUTZ. Three dimensional fourier synthesis of horse deoxyhemoglobin at 2A resolution. Nature London 228: 531, 1970.CrossRefGoogle Scholar
  4. 4.
    CERRETELLI P Limiting factors to oxygen transport on Mount Everest. J. Appl. Physiol. 40: 658–667, 1976.PubMedGoogle Scholar
  5. 5.
    CHANUTIN, A., AND R. R. CURNISH. Effect of organic and inorganic phosphates on the oxygen equilibrium curve of human erythrocyte. Arch. Biochem. Biophys. 121: 96102, 1968.Google Scholar
  6. 6.
    EATON, J. W., T. D. SKELTON, AND E. BERGER. Survival at extreme altitude: protective effect of increased hemoglobin-oxygen affinity. Science 85: 743–744, 1974.CrossRefGoogle Scholar
  7. 7.
    FATT, I. Polarographic Oxygen Sensor. Its Theory and Its Application in Biology, Medicine, and Technology. Cleveland, OH: CRC, 1976, p. 49–57.Google Scholar
  8. 8.
    GARBY, L., AND J. MELDON. The Respiratory Functions of Blood. New York: Plenum, 1977, p. 196–199.CrossRefGoogle Scholar
  9. 9.
    HEBBEL, R. P., J. W. EATON, R. S. KRONENBERG, E. D. ZANJANI, L. G. MOORE, AND E. M. BERGER. Human llamas. Adaptation to altitude in subjects with high hemoglobin oxygen affinity. J. Clin. Invest. 62: 593–600, 1978.PubMedCrossRefGoogle Scholar
  10. 10.
    HILL, A. V. The possible effects of the aggregation of the molecules of hemoglobin on its oxygen dissociation curve. J. Physiol. London 40: 4–7, 1910.Google Scholar
  11. 11.
    HILL, R. Oxygen dissociation curve of muscle hemoglobin. Proc. R. Soc. London Ser. B 120: 472, 1936.CrossRefGoogle Scholar
  12. 12.
    HURTADO, A. Animals in high altitudes: resident man. In: Handbook of Physiology. Adaptation to the Environment, edited by D. B. Dill and E. F. Adolf. Washington, DC: Am. Physiol. Soc., 1964, sect. 4, chapt. 54, p. 843–860.Google Scholar
  13. 13.
    LAHIRI, S., AND J. S. MILLEDGE. Acid-base in Sherpa altitude residents and lowlanders at 4880 m. Respir. Physiol. 2: 323–334, 1967.PubMedCrossRefGoogle Scholar
  14. 14.
    LENFANT, C., AND K. SULLIVAN. Adaptation to high altitude. N. Engl. J. Med. 284: 1298–1309, 1971.PubMedCrossRefGoogle Scholar
  15. 15.
    MONGE, C. C., AND J. WHITTEMBURY. Increased he moglobin oxygen affinity at extremely high altitudes. Science 29: 843, 1974.Google Scholar
  16. 16.
    PUGH, L. G. C. E. Blood volume and haemoglobin concentration at altitudes above 18,000 ft (5500 m). J. Physiol. London 170: 344–354, 1964.PubMedGoogle Scholar
  17. 17.
    ROSSI-BERNARDI, L., M. LUZZANA, M. SAMAJA, M. DAVI, D. DARIVA-RICCI, J. MINOLI, B. SEATON, AND R. L. BERGER. Continuous determination of the oxygen dissociation curve for whole blood. Clin. Chem. Winston-Salem, NC 21: 1747–1753, 1975.Google Scholar
  18. 18.
    SAMAJA, M., A. MOSCA, M. LUZZANA, L. ROSSIBERNARDI, AND R. M. WINSLOW. Equations and nomogram for the relationship of human blood Pso with 2,3diphosphoglycerate, CO2, and H*. Clin. Chem. Winston-Salem, NC 7: 1856–1861, 1981.Google Scholar
  19. 19.
    SAMAJA, M., AND E. ROVIDA. A new method to measure the hemoglobin oxygen saturation by the oxygen electrode. J. Biophys. Biochem. Methods 7: 143–152, 1983.CrossRefGoogle Scholar
  20. 20.
    SAMAJA, M., AND R. M. WINSLOW. The separate effects of H* and 2,3-DPG on the oxygen equilibrium curve of human blood. Br. J. Haematol. 41: 373–381, 1979.PubMedCrossRefGoogle Scholar
  21. 21.
    SIGGAARD-ANDERSEN, 0. An acid-base chart for arterial blood with normal and pathophysiological reference areas. Scared. J. Clin. Lab. Invest. 27: 240–245, 1971.Google Scholar
  22. 22.
    SIGGAARD-ANDERSEN, O., AND K. ENGEL. A new acid-base nomogram. An improved method for the calculation of the relevant blood acid-base data. Scared. J. Clin. Lab. Invest. 12: 177–186, 1960.CrossRefGoogle Scholar
  23. 23.
    THOMAS, L. J. Algorithms for selected blood acid-base and blood gas calculations. J. Appl. Physiol. 33: 154–158, 1972.PubMedGoogle Scholar
  24. 24.
    WEST, J. B. Man at extreme altitude. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1393–1399, 1982.Google Scholar
  25. 25.
    WEST, J. B., P. H. HACKETT, K. H. MARET, J. S. MILLEDGE, R. M. PETERS, JR., C. J. PIZZO, AND R. M. WINSLOW. Pulmonary gas exchange on the summit of Mount Everest. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 678–687, 1983.Google Scholar
  26. 26.
    WEST, J. B., AND P. D. WAGNER. Predicted gas exchange on the summit of Mt. Everest. Respir. Physiol. 42: 1–16, 1981.CrossRefGoogle Scholar
  27. 27.
    WINSLOW, R. M., C. C. MONGE, N. J. STATHAM, C. G. GIBSON, S. CHARACHE, J. WHITTEMBURY, O. MORAN, AND R. L. BERGER. Variability of oxygen affinity of blood: human subjects native to high altitude. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1411 1416, 1981.Google Scholar
  28. 28.
    WINSLOW, R. M., J. M. MORRISSEY, R. L. BERGER, 30. P. D. SMITH, AND C. G. GIBSON. Variability of oxygen affinity on normal blood: an automated method of measurement. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 289–297, 1978.Google Scholar
  29. 29.
    WINSLOW, R. M., M. SAMAJA, N. J. WINSLOW, L. 31. ROSSI-BERNARDI, AND R. I. SHRAGER. Simulation of the continuous blood 02 equilibrium curve over the physiological pH, DPG, and Pco2 range. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 524–529, 1983.Google Scholar
  30. 30.
    WINSLOW, R. M., M. L. SWENBERG, R. L. BERGER, R. I. SHRAGER, M. LUZZANA, M. SAMAJA, AND L. ROSSI-BERNARDI. Oxygen equilibrium curve of normal human blood and its evaluation by Adair’s equation. J. Biol. Chem. 252: 2331–2337, 1977.PubMedGoogle Scholar
  31. 31.
    WINSLOW, R. M., SAMAJA, M., AND WEST, J. B. Red cell function at extreme altitude on Mount Everest. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol., 56: 109–116, 1984.Google Scholar

Copyright information

© American Physiological Society 1984

Authors and Affiliations

  • Robert M. Winslow
    • 1
  1. 1.Division of Host Factors, Center for Infectious Diseases, Centers for Disease ControlPublic Health Services, United States Department of Health and Human ServicesAtlantaUSA

Personalised recommendations