Advertisement

High-Altitude Polycythemia

  • Robert M. Winslow
Part of the Clinical Physiology book series (CLINPHY)

Abstract

the french physician Viault traveled by train from Lima to Morococha, a small mining town situated at 4,520 m in the Peruvian Andes, in 1980. There he noted for the first time that the number of red cells increased at high altitude and thereby settled a dispute that had been argued for years about the mechanisms of acclimatization (11). Subsequently C. M. Monge and many of his followers in Peru fully described the polycythemia in high-altitude natives.

Keywords

High Altitude Carotid Body Right Bundle Branch Block Chronic Mountain Sickness Altitude Acclimatization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbrecht, P. H., and J. K. Littell. Plasma erythropoietin in men and mice during acclimatization to different altitudes. J. Appt Physiol. 32: 54–58, 1972.Google Scholar
  2. 2.
    Adamson, J. W., A. Hayashi, G. Stamatoyannopoulos, and W. F. Burger. Erythrocyte function and marrow regulation in hemoglobin Bethesda (B145 Histidine). J. Clin. Invest. 51: 2883–2888, 1972.PubMedCrossRefGoogle Scholar
  3. 3.
    Alippi, R. M., J. M. Giglio, A. C. Barcelo, C. E. Bozzini, R. Farina, and M. E. Rio. Influence of dietary protein concentration and quality on response to erythropoietin in the polycythaemic rat. Br. J. Haematol. 43: 451–456, 1979.PubMedCrossRefGoogle Scholar
  4. 4.
    Birgegard, G., O. Miller, J. Caro, and A. Erslev. Serum erythropoietin levels by radioimmunoassay in polycythemia. Scand. J. Haematol. 29: 161–167, 1982.PubMedCrossRefGoogle Scholar
  5. 5.
    Buick, F. J., N. Gledhill, A. B. Froese, L. Spriet, and E. C. Meyers. Effect of induced erythrocythemia on aerobic work capacity. J. Appt Physiol.: Respirat. Environ. Exercise Physiol 48: 636–642, 1980.Google Scholar
  6. 6.
    Castle, W. B., and J. H. Jandl. Blood viscosity and blood volume: opposing influences upon oxygen transport in polycythemia. Semin. Hematol 3: 193–198, 1966.Google Scholar
  7. 7.
    Cerretelli, P. Oxygen transport on Mount Everest: the effects of increased hematocrit on maximal 02 transport. Adv. Exp. Med. Biol 75: 113–119, 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    Chiodi, H. Aging and high-altitude polycythemia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 1019–1020, 1978.Google Scholar
  9. 9.
    Cruz, J. C., C. Diaz, E. Marticorena, and V. Hi-Lario. Phlebotomy improves pulmonary gas exchange in chronic mountain sickness. Respiration 38: 305–313, 1979.PubMedCrossRefGoogle Scholar
  10. 10.
    Erslev, A. J. Humoral regulation of red cell production. Blood 8: 349, 1953.PubMedGoogle Scholar
  11. 11.
    Erslev, A. J. Erythroid adaptation to altitude. Blood Cells 7: 495–508, 1981.PubMedGoogle Scholar
  12. 12.
    Erslev, A. J., J. Caro, K. Silver, and O. Miller. The biogenesis of erythropoietin. Exp. Hematol. 8, Suppl.: 1–13, 1981.Google Scholar
  13. 13.
    Erslev, A. J., P. J. Mckenna, J. P. Copelli, J. Hamburger, H. E. Cohn, and J. E. Clark. The rate of red cell production in two nephrectomized patients. Arch. Intern. Med. 122: 230–235, 1968.PubMedCrossRefGoogle Scholar
  14. 14.
    Faura, J., J. Ramos, C. Reynafarje, E. English, P. Finne, and C. A. Finch. Effect of altitude on erythropoiesis. Blood 33: 668–676, 1969.PubMedGoogle Scholar
  15. 15.
    Gilbert, D. L. The first documented report of mountain sickness: the China or headache mountain story. Respir. Physiol 52: 315–326, 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    Glaser, E. M., and J. Mcmichael. Effect of venesection on the capacity of the lungs. Lancet 2: 230–231, 1940.CrossRefGoogle Scholar
  17. 17.
    Gustafsson, L., L. Appelgren, and H. E. Myrvold. Polycythemia, viscosity and blood flow in working and non-working skeletal muscle in the dog. Bibl. Anat. 18: 56–59, 1979.Google Scholar
  18. 18.
    Guyton, A. C., C. E. Jones, and T. G. Coleman. Cardiac Output and Its Regulation ( 2nd ed ). Philadelphia, PA: Saunders, 1973.Google Scholar
  19. 19.
    Halvorsen, S. The central nervous system in regulation of erythropoiesis. Acta Haematol. 35: 65–79, 1966.PubMedCrossRefGoogle Scholar
  20. 20.
    Hurtado, A., C. F. Merino, and D. Delgado. Influence of anoxemia on erythropoietic activity. Arch. Intern. Med. 75: 284–323, 1945.CrossRefGoogle Scholar
  21. 21.
    Jacobson, L. O., E. Goldwasser, W. Freed, and L. Plzak. Role of the kidney in erythropoiesis. Nature London 179: 633, 1957.PubMedCrossRefGoogle Scholar
  22. 22.
    Jan, K.-M., and S. Chien. Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am. J. Physiol. 233 (Heart Circ. Physiol. 2 ): H106 - H113, 1977.Google Scholar
  23. 23.
    Koller, L. D., J. H. Exon, and J. E. Nixon. Polycythemia produced in rats by environmental contaminants. Arch. Environ. Health 34: 252–255, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Kryger, M., R. Mccullough, R. Doekel, D. Col-Lins, J. V. Weil, and R. F. Grover. Excessive polycythemia of high altitude: role of ventilatory drive and lung disease. Am. Rev. Respir. Dis. 118: 659–665, 1978.PubMedGoogle Scholar
  25. 25.
    Merino, C. F. The Plasma Erythropoietic Factor in the Polycythemia of High Altitudes. School of Aviation Medi tine, United States Air Force, Randolph Base, Texas, Rep. 56, November 1956.Google Scholar
  26. 26.
    Messmer, K. Hemodilution. Surg. Clin. North Am. 55: 659–678, 1975.PubMedGoogle Scholar
  27. 27.
    Mirand, E. A., and G. D. Murphy. Erythropoietin alterations in human liver disease. NY State J. Med. 71: 860–864, 1971.Google Scholar
  28. 28.
    Monge, C. C., R. Lozano, and J. Whittembury. Effect of blood-letting on chronic mountain sickness. Nature London 107: 770, 1965.CrossRefGoogle Scholar
  29. 29.
    Monge, C. C., and J. Whittembury. Chronic mountain sickness and the physiopathology of hypoxemic polycythemia. In: Hypoxia: Man at Altitude, edited by J. R. Sutton, N. L. Jones, and C. S. Houston. New York: Thieme-Stratton, 1982, p. 51–56.Google Scholar
  30. 30.
    Monge, C. M. La enfermedad de los Andes. Sindromes eritremicos. An. Fac. Med. Lima 11: 1, 1928.Google Scholar
  31. 31.
    Monge, C. M. Life in the Andes and chronic mountain sickness. Science 95: 79–84, 1942.PubMedCrossRefGoogle Scholar
  32. 32.
    Nates, J. P., and M. Witter. Presence of erythropoietin in the plasma of one anephric patient. Blood 31: 249251, 1968.Google Scholar
  33. 33.
    Nathan, D. G., E. Schupak, F. Stahlman, and J. P. Merrill. Erythropoiesis in anephric man. J. Clin. Invest. 43: 2158–2165, 1964.PubMedCrossRefGoogle Scholar
  34. 34.
    NCCLS Proposed standard: PSH-6 Standard Assay for the Determination of Erythropoietin Activity in Body Fluids. 1979.Google Scholar
  35. 35.
    Penaloza, D., and F. Sime. Chronic cor pulmonale due to loss of altitude acclimatization (chronic mountain sickness). Am. J. Med. 50: 728–743, 1971.PubMedCrossRefGoogle Scholar
  36. 36.
    Reynafarje, C., J. Ramos, J. Faura, and D. Villavicencio. Humoral control of erythropoietic activity in man during and after altitude exposure. Proc. Soc. Exp. Biol. Med. 116: 649–650, 1964.PubMedGoogle Scholar
  37. 37.
    Rich, I. N., and B. Kubanek. Release of erythropoietin from macrophages mediated by phagocytosis of crystalline silica. J. Reticuloendotheliol. Soc. 31: 17–30, 1980.Google Scholar
  38. 38.
    Sanchez, C., C. Merino, and M. Figallo. Simultaneous measurement of plasma volume and cell mass in polycythemia of high altitude. J. Appl. Physiol. 28: 775–778, 1970.PubMedGoogle Scholar
  39. 39.
    Sarnquist, F. H., R. B. Schoene, and P. H. Hackett. Exercise tolerance and cerebral function after acute hemodilution of polycythemic mountain climbers. Physiologist 25: 327, 1982.Google Scholar
  40. 40.
    Sherwood, J. B., and E. Goldwasser. A radioimmunoassay for erythropoietin. Blood 54: 885–893, 1979.PubMedGoogle Scholar
  41. 41.
    Smith, E. E., and J. W. Crowell. Role of an increased hematocrit in altitude acclimatization. Aerospace Med. 22: 39–43, 1967.Google Scholar
  42. 42.
    Tenney, S. M., and L. C. Ou. Physiological evidence for increased tissue capillarity in rats acclimatized to high altitude. Respir. Physiol. 8: 137–150, 1970.PubMedCrossRefGoogle Scholar
  43. 43.
    Tramezzani, J. H., E. Monita, and S. R. Chicchio. The carotid body as a neuroendocrine organ involved in control of erythropoiesis. Proc. Natl. Acad. Sci. 68: 52–55, 1971.PubMedCrossRefGoogle Scholar
  44. 44.
    Whittembury, J., and C. C. Monge. High altitude, hematocrit, and age. Nature London 238: 278–279, 1972.CrossRefGoogle Scholar
  45. 45.
    Zink, R. A., W. Schaffert, W. Brendel, K. Mess-Mer, E. Schmidt, and P. Brenett. Hemodilution in high altitude mountain climbing: a method to prevent or treat frostbite, high altitude pulmonary edema, and retinal hemorrhage. Abstracts of Scientific Papers, Am. Soc. Anesthesiolog. Annu. Meet., Chicago, 1978, p. 93.Google Scholar
  46. 46.
    Zucali, J. R., Lee, M., and Mirand, E. A. Carbon dioxide effects on erythropoietin and erythropoiesis. J. Lab. Clin. Med. 92: 648–655, 1978.PubMedGoogle Scholar

Copyright information

© American Physiological Society 1984

Authors and Affiliations

  • Robert M. Winslow
    • 1
  1. 1.Division of Host FactorsCenter for Infectious Diseases, Centers for Disease Control, Public Health Service, United States Department of Health and Human ServicesAtlantaUSA

Personalised recommendations