Rhythm Generation

  • Curt von Euler
Part of the People and Ideas book series (PEOPL)


Several important scientific and technological advances made during the decades before World War II exerted great seminal influence on the study of respiratory physiology and the control of breathing.


Carotid Body Respiratory Rhythm Rhythm Generation Inspiratory Phase Respiratory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamson S.L. Initiation of lung ventilation at birth. Fetal Med.Rev. 3: 133, 1991.CrossRefGoogle Scholar
  2. 2.
    Adrian E.D. Afferent impulses in the vagus and their effect on respiration. J. Physiol. (Lond.) 79: 332–358, 1933.Google Scholar
  3. 3.
    Adrian E.D. and D.W. Bronk. J. Physiol. (Lond.) 67: 119–151, 1929.Google Scholar
  4. 4.
    Adrian E.D. and Y. Zotterman. J. Physiol. (Lond.) 61: 151–171; 465–483, 1926.Google Scholar
  5. 5.
    Ahlfeld F.v. Ueber bisher noch nicht beschriebene intrauterine Bewegungen des Kindes. Verh. d. Gesamte Gynek. Leipzig: Breitkopf uns Hartel 203–210, 1888.Google Scholar
  6. 6.
    Ahlfeld, F.v. Die intrauterine Fätigkeit der Thorax-und Zwerchfellmuskulatur. Intrauterine Atmung. Monatschr. Geburtshilf. Gynek. 143–169, 1905.Google Scholar
  7. 7.
    Andersen P. and T.A. Sears. Medullary activation of intercostal fusimotor and alpha motoneurones. J. Physiol. (Lond.) 209: 739–755, 1870.Google Scholar
  8. 7a.
    Arita H., N. Kogo, and K. Ichikawa. Locations of medullary neurons with nonphasic discharges excited by stimulation of central and/or peripheral chemoreceptors and by activation of nociceptors in cat. Brain Res. 442: 1–10, 1988.PubMedCrossRefGoogle Scholar
  9. 7b.
    Ashby W.R. An Introduction to Cybernetics. New York: Wiley, 1956.Google Scholar
  10. 8.
    Backman S. S., K. Anders, D. Ballantyne, H. Camerer, H. Dickhaus, D. Jordan, S. Miftin, D.W. Richter, N. Röhrig, and K.M. Spyer. Evidence for a monosynaptic connection between slowly adapting pulmonary stretch receptor afferents and inspiratory beta neurons. Pflugers Arch. 402: 129–136, 1984.PubMedCrossRefGoogle Scholar
  11. a.Balis U.J., K.F. Morris, J. Koleski, and B.G. Lindsey. Stimulations of a ventrolateral medullary neural network for respiratory rhythmogenesis inferred from spike train crosscorrelation. Biol.Cyber. 70: 311–327, 1994.CrossRefGoogle Scholar
  12. 9.
    Ballantyne D. and D.W. Richter. Post-synaptic inhibition of bulbar inspiratory neurones in the cat. J. Physiol. (Lond.) 348: 67–88, 1984.Google Scholar
  13. 10.
    Ballantyne D. and D.W. Richter. The non-uniform character of expiratory synaptic activity in expiratory bulbospinal neurones of the cat. J. Physiol. (Lond.) 370: 433–456, 1986.Google Scholar
  14. 11.
    Baumgarten R.v. and E. Kanzow. The interaction of two types of inspiratory neurons in the region of the tractus solitarius of the cat. Arch. Ital. Biol. 96: 361–373, 1953.Google Scholar
  15. 12.
    Benchetrit G., P. Baconnier, and J. Demongeot, editors. Concepts and Formalizations in the Control of Breathing. Manchester: Manchester University Press, 1987.Google Scholar
  16. Berger A.J. Dorsal respiratory group neurons in the medulla of cat: Spinal projections, responses to lung inflation and superior laryngeal nerve stimulation. Brain Res. 135: 231–254, 1977.Google Scholar
  17. 13a.
    Berger A.J. and K.A. Cooney. Ventilatory effects of kainic acid injection on the ventrolateral solitary nucleus. J. Appl. Physiol. 52: 131–140, 1982.PubMedGoogle Scholar
  18. 14.
    Bertrand F., A. Hugelin, and J.F. Vibert. A stereologic model of pneumotaxic oscillator based on spatial and temporal distributions of neuronal bursts. J Neurophysiol. 37: 91–107, 1974.PubMedGoogle Scholar
  19. 15.
    Bianchi A.L. and J.C. Barillot. Respiratory neurons in the region of the retrofacial nucleus: pontile, medullary, spinal and vagal projections. Neurosci. Lett. 31: 277–282, 1982.PubMedCrossRefGoogle Scholar
  20. 16.
    Bianchi A. L., J. C. Barilot, and L. Grélot. Pattern of excitability of respiratory neurons in the region of the retrofacial nucleus. In: Neurobiology of the Control of Breathing, edited by C. von Euler and H. Lagercrantz. New York: Raven Press, 1987, pp. 149–155.Google Scholar
  21. 17.
    Bianchi A. L., L. Grélot, S. Iscoe, and J. E. Remmers. Electrophysiological properties of rostral medullary respiratory neurones in the cat: an intracellular study. J. Physiol. (Lond.) 407: 293–310, 1988.Google Scholar
  22. 18.
    Bongianni F., G. Fontana, and T. Pantaleo. Effects of electrical and chemical stimulation of the Bötzinger complex on respiratory activity in the cat. Brain Res. 445: 254–261, 1988.PubMedCrossRefGoogle Scholar
  23. 18a.
    Bongianni F., Corda M., Fontana G., and T. Pantaleo. Expiration-related neurons in the caudal ventral respiratory group of the cat: influences of the activation of Bötzinger complex neurons. Brain Res. 526: 299–302, 1990.PubMedCrossRefGoogle Scholar
  24. 18b.
    Bongianni F., M. Corda, G.A. Fontana, and T. Pantaleo. Reciprocal connections between rostral ventrolateral medulla and inspiration-related medullary areas in the cat. Brain Res. 565: 171–174, 1991.CrossRefGoogle Scholar
  25. 19.
    Bongianni F., M. Corda, G.A. Fontana, and T. Pantaleo. Excitatory and depressant respiratory responses to chemical stimulation of the rostral ventrolateral medulla in the cat. Acta Physiol. Scand., 148: 315–325, 1993.PubMedCrossRefGoogle Scholar
  26. 20.
    Bongianni F., M. Corda, G.kA. Fontana, and T. Pantaleo. Chemical activation of caudal medullary expiratory neurones alters the pattern of breathing in the cat. J. Physiol. 474: 497–507, 1994.PubMedGoogle Scholar
  27. 21.
    Botros S.M. and E.N. Bruce. Neural network implementation of a three-phase model of respiratory rhythm generation. Biol. Cybern. 63: 143–153, 1990.PubMedCrossRefGoogle Scholar
  28. 22.
    Bradley G.W., C. v. Euler, I. Marttila, and B. Roos. A model of the central and reflex inhibition of inspiration in the cat. Biol. Cybern. 19: 105–116, 1975.PubMedCrossRefGoogle Scholar
  29. 23.
    Breckenridge C. G. and H. E. Hoff. Pontine and medullary regulation of respiration in the cat. Am. J. Physiol. 160: 385–394, 1950.PubMedGoogle Scholar
  30. 24.
    Breuer, J. Die Selbststeuerung der Atmung durch den Nervus vagus. Sitzungsber. Akad. Wiss. Wien Abt. 258: 909–937, 1868.Google Scholar
  31. 25.
    Brookhart J. M. The respiratory effects of localized faradic stimulation of the medulla oblongata. Am., J. Physiol. 129: 709–723, 1940.Google Scholar
  32. 26.
    Brown T.G. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of the rhythmic activity in progression and a theory of the evolution of function in the nervous system. J. Physiol. (Lond.) 48: 18–46, 1914.Google Scholar
  33. 27.
    Budzinska K., C. v. Euler, F. F. Kao, T. Pantaleo, and Y. Yamamoto. Effects of graded focal cold block in rostral areas of the medulla. Acta Physiol. Scand. 124: 329–430, 1985.PubMedCrossRefGoogle Scholar
  34. 28.
    Budzinska K., C. v. Euler, E. F. Kao, T. Pantaleo, and Y. Yamamoto. Effects of graded focal cold block in the solitary and para-ambigual regions of the medulla in the cat. Acta Physiol. Scand. 124: 317–328, 1985.PubMedCrossRefGoogle Scholar
  35. 29.
    Camerer H., D.W. Richter, N. Röhrig, and M. Meesmann. Lung stretch receptor inputs to R-alpha-neurones: a model for “respiratory gating.” In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz. Wenner-Gren International Symposium Series, vol 32. Oxford, Pergamon Press, 1979, pp. 261–266.Google Scholar
  36. 30.
    Cannon W.B. The Wisdom of the Body 2 ed. New York: W.W. Norton, 1939.Google Scholar
  37. 31.
    Cherniack N.S. Potential role of optimization in alveolar hypoventilation and respiratory instability. In: Neurobiology of the Control of Breathing, edited by C. von Euler and H. Lagercrantz. Wenner-Gren International Symposium Series. New York: Raven Press, 1987, pp. 45–50.Google Scholar
  38. 32.
    Cherniack N.S., C. v. Euler, I. Homma, and F.F. Kao. Graded changes in central chemoceptor input by local temperature changes on the ventral surface of medulla. J. Physiol (Lond.) 287: 191–211, 1979.Google Scholar
  39. 33.
    Clark F.J. and C. v. Euler. On the regulation of depth and rate of breathing. J. Physiol. (Lond.) 222: 267–295, 1972.Google Scholar
  40. 34.
    Cohen M.I. Intrinsic periodicity of the pontile pneumotaxic mechanism. Am. J. Physiol 195: 23–27, 1958.PubMedGoogle Scholar
  41. 35.
    Cohen M.I. Switching of the respiratory phases and evoked phrenic responses produced by rostral pontine electrical stimulation. J. Physiol. (Lond.) 217: 133–158, 1971.Google Scholar
  42. 36.
    Cohen, M.I. Neurogenesis of respiratory rhythm in the mammal. Physiol. Rev. 59: 1105–1173, 1979.PubMedGoogle Scholar
  43. 37.
    Cohen M.I. Central determinants of respiratory rhythm. Annu. Rev. Physiol. 43: 9 1104, 1981.Google Scholar
  44. 38.
    Cohen M.I. and J.L. Feldman. Discharge properties of dorsal medullary inspiratory neurones: relation to pulmonary afferent and phrenic efferent discharge. J. Neurophsiol. 51: 753–776, 1984.Google Scholar
  45. 39.
    Cohen M.I., W.-X. Huang, R. Barnhart and W. R. See. Timing of medullary late-inspiratory neuron discharges: Vagal afferent effects indicate possible off-switch function. J. Neurophsiol. 69: 1784–1787, 1993.Google Scholar
  46. 40.
    Cohen M.I. and S.C. Wang. Respiratory neuronal activity in pons of cat. J. Neurophysiol. 22: 33–50, 1959.PubMedGoogle Scholar
  47. 41.
    Dawes G.S. The rediscovery of fetal breathing movements and its consequences. In: Respiratory Control and Lung Development in the Fetus and Newborn. Edited by B.M. Johnston and P.D. Gluckman, Ithaca NY: Perinatology Press, 1986, pp. 209–222.Google Scholar
  48. 42.
    Dawes G.S., H. E. Fox, B. M. Leduc, G. C. Liggins, and R. T. Richards. Respiratory movements and paradoxical sleep in the foetal lamb. J. Physiol. (Lond.) 210: 47–48P, 1970.Google Scholar
  49. 43.
    Denny-Brown D. Nature of postural reflexes. Proc. R. Soc., B. 104: 252–301, 1929.CrossRefGoogle Scholar
  50. 43a.
    Dillon G.H., D.E. Welsh, and T.G. Waldrop. Modulation of respiratory reflexes by an excitatory amino acid mechanism in the ventrolateral medulla. Respir. Physiol. 85: 55–72, 1991.PubMedCrossRefGoogle Scholar
  51. 44.
    DiMarco A. F., C. v. Euler, J.R. Romaniuk, and Y. Yamamoto. Positive feedback facilitation of external intercostal and phrenic inspiratory activity by pulmonary stretch receptors. Acta Physiol. Scand. 113: 375–386, 1981.PubMedCrossRefGoogle Scholar
  52. 45.
    DiMarco A.F., C. v. Euler, J.R. Romaniuk, and Y. Yamamoto. Immediate changes in ventilation and respiratory pattern associated with onset and cessation of locomotion in the cat. J. Physiol. (Lond.) 343: 1–16, 1983.Google Scholar
  53. 45a.
    Eccles J.D. The ionic mechanism of ostsynaptic inhibition: Nobel lecture in physiology or medicine 1963. In: Nobel Foundation Nobel Lectures—Physiology or Medicine 19631970, Amsterdam: Elsevier, 1972, pp. 6–31.Google Scholar
  54. 45b.
    Edelman G.M. Group selection and phasic recurrent signalling: a theory of higher brain function. In: The Mindful Brain, edited by G.M. Edelman and V.B. Mountcastle. Cambridge, MA: MIT Press, 1982, pp. 51–100.Google Scholar
  55. 46.
    Elam M., T. Yao, R Thorén, and T. H. Svensson. Hypercapnia and hypoxia: chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Res. 22: 373–381, 1981.CrossRefGoogle Scholar
  56. 47.
    Eldridge F.L., D.E. Millhorn, and T.G. Waldrop. Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211: 844–846, 1981.PubMedCrossRefGoogle Scholar
  57. 48.
    Errchidi S., R. Monteau, and G. Hilaire. Noradrenergic modulation of the medullary rhythm generator in the new born rat: an in vitro study. J. Physiol. (Lond.) 443: 477–498, 1991.Google Scholar
  58. 48a.
    Euler, C. v. The control of respiratory movement. In: Breathlessness, edited by J.B.L. and E. J.M. Campbell. Oxford: Blackwell Scientific Publications, 1966, pp. 19–32.Google Scholar
  59. 49.
    Euler C. v. On the role of proprioceptors in perception and execution of motor acts with special reference to breathing. In: Loaded Breathing, edited by L.D. Pengelly, A.S. Rebuck, and E.J.M. Campbell. Ontario: Longman Canada, 1974, pp. 139–149.Google Scholar
  60. 50.
    Euler C. v. Introduction: Forebrain control of breathing behaviour. In: Respiratory Psychophysiology, edited by C. von Euler and M. Katz-Salamon. Wenner-Gren International Symposium Series, vol. 50. Basingstoke: The Macmillan Press, 1988, pp. 1–14.Google Scholar
  61. 51.
    Euler C. v. Brainstem mechanisms for generation and control of breathing pattern. In: Handbook of Physiology. The Respiratory System, vol. 2, Control of Braeathing, ch. 1, edited by N.S. Cherniack and J.G. Widdicombe. Bethesda, MD: American Physiological Society, 1986, pp. 1–67.Google Scholar
  62. 52.
    Euler C. v. Neural organization and rhythm generation. In: Crystal, R.G., West, J.B. eds. The Lung: Scientific Foundations edited by R.G. Crystal and J.B. West. Second ed. New York: Raven Press, 1996 (in press).Google Scholar
  63. 53a.
    Euler, C. v. and U. Söderberg. Medullary chemo-sensitive receptors. J. Physiol. (Lond.) 118: 545–554, 1952.Google Scholar
  64. 54.
    Euler C. v. and T. Trippenbach. Excitability changes of the inspiratory “off-switch” mechanism tested by electrical stimulation in nucleus parabrachialis in the cat. Acta Physiol. Scand. 97: 175–188, 1976.CrossRefGoogle Scholar
  65. 55.
    Euler U.S. v., G. Liljestrand, and Y. Zotterman. Über den Reizmechanismus der Chemorezeptoren in Glomus caroticum. Acta Physiol. Scand. 1: 383–385, 1941.CrossRefGoogle Scholar
  66. 56.
    Ezure D. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog. Neurobiol. 35: 429–450, 1990.PubMedCrossRefGoogle Scholar
  67. 57.
    Fedorko L. and E.G. Merrill. Axonal projections from the rostral expiratory neurones of the Bötzinger complex to medulla and spinal cord in the cat. J. Physiol. (Lond.) 350: 487496, 1984.Google Scholar
  68. 58.
    Feldman J.L. and M.I. Cohen. Relation between expiratory duration and rostral medullary expiratory neuronal discharge. Brain Res. 141: 172–178, 1978.PubMedCrossRefGoogle Scholar
  69. 59.
    Felman J. L., M.I. Cohen, and R. Wolotsky. Phasic pulmonary afferent activity drastically alters the respiratory modulation of neurons in the rostral pontine pneumotaxic centre. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Vol. 59. Paris: INSERM, 1976, pp. 95–105.Google Scholar
  70. 60.
    Feldman J. L., M.I. Cohen, and R. Wolotsky. Powerful inhibition of pontine respiratory neurons by pulmonary afferent activity. Brain Res. 104: 341–346, 1976.PubMedCrossRefGoogle Scholar
  71. 61.
    Feldman J.L., D.R McCrimmon, and D.F. Speck. Effect of synchronous activation of medullary inspiratory bulbo-spinal neurones on phrenic nerve discharge in cat. J. Physiol. (Lond.) 347: 241–254, 1984.Google Scholar
  72. 62.
    Feldman J.L., D. R McCrimmon, H.H Ellenberger, J.C. Smith, and D.F. Speck. Generation of respiratory pattern in mammals. In: Neural Control of Rhythmic Movements in Vertebrates, edited by A.H. Cohen, S. Grillner, and S. Rossignol. New York: John Wiley and Sons, 1988, pp. 73–100.Google Scholar
  73. 63.
    Feldman J.L. and D.F. Speck. Interactions among inspiratory neurons in dorsal and ventral respiratory groups in cat medulla. J. Neurophysiol. 49: 472–490, 1983.PubMedGoogle Scholar
  74. 64.
    Feldman J. L., U. Windhorst, K. Anders, and D. W. Richter. Synaptic interaction between medullary respiratory neurones during apneusis induced by NMDA-receptor blockade in cat. J. Physiol. 450: 303–323, 1992.PubMedGoogle Scholar
  75. 65.
    Fenn W.O. Introductory remarks. Ann. NY Acad. Sci. 109: 415–417, 1963.CrossRefGoogle Scholar
  76. 66.
    Foutz A.S., J. Champagnat, M. Denavit-Saubiè. Involvement of N-Methyl-D-aspartate (NMDA) receptors in respiratory rhythmogenesis. Brain Res. 500: 199–208, 1989.PubMedCrossRefGoogle Scholar
  77. 67.
    Gad J. Über das Athmungscentrum in der Medulla oblongata. Arch. Anat. Physiol. 17: 175–184, 1893.Google Scholar
  78. 68.
    Gesell R., C. S. Magee, and J.W. Bricker. Activity patterns of the respiratory neurons and muscles. Am. J. Physiol. 128: 615–628, 1940.Google Scholar
  79. 69.
    Getting P.A. Emerging principles governing the operation of neural networks. Annu. Rev. Neurosci. 12: 185–204, 1989.PubMedCrossRefGoogle Scholar
  80. 69a.
    Granit R., editor. Muscular Afferents and Motor Control-Nobel Symposium I. New York: John Wiley and Sons, 1966.Google Scholar
  81. 69b.
    Greer J.J., J. C. Smith, and J. L. Feldman. Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat. J. Physiol.(Lond.) 437: 727–749, 1991.Google Scholar
  82. 70.
    Greer J.J., J. C. Smith, and J. L. Feldman. Glutamate release and presynaptic action of AP4 during inspiratory drive to phrenic motoneurons. Brain Res. 576: 355–357, 1992.PubMedCrossRefGoogle Scholar
  83. 71.
    Grélot L., A.L. Bianchi, S. Iscoe, and J. E. Remmers. Expiratory neurones of the rostral medulla: anatomical and functional correlates. Neurosci. Lett. 89: 140–145, 1988.PubMedCrossRefGoogle Scholar
  84. 72.
    Grillner S. Control of locomotion in bipeds, tetrapods, and fish. In: Handbook of Physiology. The Nervous System,edited by J.M. Brookhart and V.B. Mountcastle. Section 1, vol. II, pt. 2, ch. 26. Bethesda, MD: American Physiological Society, 1981, pp. 11791236.Google Scholar
  85. 73.
    Grillner S., J. Buchanan, L. Brodin, N. Dale, R. Hill, and P. Wallén. Transmitters, membrane properties and network circuitry in the control of locomotion in lamprey. Trends Neuro Sci. 10: 34–41, 1987.CrossRefGoogle Scholar
  86. 74.
    Grillner S., T. Matsushima. The neural network underlying locomotion in lamprey-synaptic and cellular mechanisms. Neuron. 7: 1–15, 1991.PubMedCrossRefGoogle Scholar
  87. 75.
    Grodins F. S. Analysis of factors concerned in regulation of breathing in exercise. Physiol. Rev. 20: 220–239, 1950.Google Scholar
  88. 76.
    Grodins F.S., and S.M. Yamashiro. What is the pattern of breathing regulated for? In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz. Wenner-Gren Center International Symposium Series. Vol. 32. Oxford: Pergamon, 1979, pp. 169–176.Google Scholar
  89. 77.
    Haji A., J.A. Remmers, and R. Takeda. Effects of glycine and GABA on bulbar respiratory neurons of cat. J. Neurophysiol. 63: 955–965, 1990.PubMedGoogle Scholar
  90. 78.
    Haji A., R. Takeda, and J.A. Remmers. Evidence that glycine and GABA mediate postsynaptic inhibition of bulbar respiratory neurons in the cat. J.Appl. Physiol. 73: 2333–2342, 1992.PubMedGoogle Scholar
  91. 79.
    Hayashi F. and J. Lipski. The role of inhibitory amino acids in control of respiratory motor output in arterially perfused rat. Respir. Physiol. 89: 47–63, 1992.PubMedCrossRefGoogle Scholar
  92. 80.
    Hering E. Die Selbststeuerung der Atmung durch den Nervus vagus. Sitzungsber. Akad. Wiss. Wein Abt. 257: 672–677, 1868.Google Scholar
  93. 81.
    Hertzberg T., S. Hellström, H. Lagercrantz, and J.M. Pequignot. Development of the arterial chemoreflex and turnover of carotid body catecholamines in the newborn rat. J. Physiol. (Lond.) 425: 211–225, 1990.Google Scholar
  94. 82.
    Heyman C. The part played by vascular presso-and chemo-receptors in respiratory control. In: Nobel Lectures-Physiology or Medicine (1922–1941). Amsterdam: Elsevier, 1965, pp. 460–481.Google Scholar
  95. 83.
    Hilaire G., A. L. Bianchi, and R. Monteau. A cross-correlation study of interaction among respiratory neurons of dorsal, ventral and retrofacial groups in cat medulla. Brain Res. 302: 19–31, 1984.PubMedCrossRefGoogle Scholar
  96. 84.
    Hoff H. E. and C.G. Breckenridge. The medullary origin of respiratory periodicity in the dog. Am. J. Physiol. 158: 157–172, 1949.PubMedGoogle Scholar
  97. 85.
    Hukuhara T. Jr. Functional organization of brain stem respiratory neurons and its modulation induced by afferences. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Vol. 59. Paris: INSERM, 1976, pp. 41–53.Google Scholar
  98. 86.
    Huszczuk A. A respiratory pump controlled by phrenic nerve activity (abstract). J. Physiol. (Lond.) 210: 183P - 184P, 1970.Google Scholar
  99. 86a.
    Jiang C. and J. Lipski. Extensive monosynaptic inhibition of ventral respiratory group neurons by augmenting neurons in the Bötzinger complex in the cat. Exp. Brain Res. 81: 639–348, 1990.PubMedCrossRefGoogle Scholar
  100. 87.
    Johnson S.M. and P.A. Getting. Electrophysiological properties of neurons within the nucleus ambiguus of adult guinea pigs. J. Neurophysiol. 66: 744–761, 1991.PubMedGoogle Scholar
  101. 88.
    Johnston B.M. and Gluckman P.D. Respiratory control and lung development in the fetus and newborn. New York: Penguin Press, 1986Google Scholar
  102. Kalia M.P. Anatomical organization of central respiratory neurons. Annu. Rev. Physiol. 43: 105–120, 1981.Google Scholar
  103. 90.
    Kalia M. and D.W. Richter. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intro-axonal HRP in the nucleus of the tractus solitarius of the cat. I. A Light Microscopic Analysis. J. Comp. Neurol. 241: 503–520, 1985.PubMedCrossRefGoogle Scholar
  104. 91.
    Kalia M. and D.W. Richter. Rapidly adapting pulmonary receptor afferents: II. Arborization in the nucleus of the tractur solitarius. J. Comp. Neurol. 274: 560–573, 1988.PubMedCrossRefGoogle Scholar
  105. 92.
    Karczewski W.A. and H. Gromysz. The “split respiratory centre”: lessons from brainstem transections. In: Advances in Physiological Sciences. Respiration, edited by L. Hutas and L.A. Debreczeni. Vol. 10. Oxford: Pergamon Press, 1981, pp. 587–594.Google Scholar
  106. 93.
    Klages S., M.C. Bellingham, and D.W. Richter. Late expiratory inhibition of stage 2 expiratory neurons in the cat-a correlate of expiratory termination. J. Neurophysiol. (in press).Google Scholar
  107. 94.
    Knox C.K., Characteristics of inflation and deflation reflexes during expiration in the cat. J. Neurophysiol. 36: 284–295, 1973.PubMedGoogle Scholar
  108. 95.
    Knox C.K. Reflex and central mechanisms controlling expiratory duration. In: Central Nervous Control Mechanisms in Breathing. edited by C. von Euler and H. Lagercrantz. Oxford: Pergamon Press, 1979, pp. 203–216.Google Scholar
  109. 96.
    Lagercrantz H. Neuromodulators and respiratory control during development. Trends Neurosci. 10: 368–372, 1987.CrossRefGoogle Scholar
  110. 97.
    Lagercrantz H., J. Pequignot, J. -M.Pequignot, and L. Peyrin. The first breaths of air stimulate noradrenaline turnover in the newborn rat. Acta Physiol. Skand. 144: 433438, 1992.Google Scholar
  111. 98.
    Lagercrantz H. and T. Slotkin. The stress of being born. Sci. Am. 254: 100–107, 1986.PubMedCrossRefGoogle Scholar
  112. 99.
    Lagercrantz H. and M. Srinivasan. Development and function of neurotransmitter/ modulator systems in the brain stem. In:The Fetal and Neonatal Brain Stem: Developmental and Clinical Issues, edited by M.A. Hanson. Cambridge: Cambridge University Press, 1991, pp. 1–20.Google Scholar
  113. 100.
    Lindsey B.G., L. S. Segers, and R. Shannon. Functional associations among simultaneously monitored lateral medullary respiratory neurons in the cat. II. Evidence for inhibitory actions of expiratory neurons. J. Neurophysiol. 57: 1101–1117, 1987.Google Scholar
  114. 100a.
    Lipski J., K. Ezure, and R.B. Wong She. Identification of neurons receiving input from pulmonary rapidly adapting receptors in the cat. J. Physiol. (Lond.) 443: 55–77, 1991.Google Scholar
  115. 101.
    Lipski J., L. Kubin, and J. Jodkowski. Synaptic action of R-ß neurons on phrenic motoneurons studied with spike-triggered averaging. Brain Res. 288: 105–118, 1983.PubMedCrossRefGoogle Scholar
  116. 102.
    Lipski J. and E.G. Merrill. Electrophysiological demonstration of the projection from expiratory neurones in rostral medulla to contralateral dorsal respiratory group. Brain Res. 197: 521–524, 1980.PubMedCrossRefGoogle Scholar
  117. 102a.
    Loeschcke H. H. Central chemosensitivity and the reaction theory. Review lecture. J. Physiol. (Lond.) 332: 1–24, 1982.Google Scholar
  118. 103.
    Long S., and J. Duffin. The neuronal determinants of respiratory rhythm. Prog. Neurobiol 27: 101–182, 1986.PubMedCrossRefGoogle Scholar
  119. 104.
    Lumsden T. Observations on the respiratory centres in the cat. J. Physiol. (Lond.) 57: 153–160, 1923.Google Scholar
  120. 105.
    Lumsden T. Observations on the respiratory centres. J. Physiol. (Lond.)57: 354–367, 1923.Google Scholar
  121. 106.
    Lumsden T. The regulation of respiration. Part I. J Physiol. (Lond.) 58: 81–91, 1923.Google Scholar
  122. 107.
    Lydic R. and J. Orem. Respiratory neurons of the pneumotaxic center during sleep and wakefulness. Neurosci. Lett. 15: 187–192, 1979.PubMedCrossRefGoogle Scholar
  123. 108.
    Machin K. E. Feedback theory and its application to biological systems. Symp. Soc. Exp. Biol. 18: 441–446, 1964.Google Scholar
  124. 109.
    Magoun H.W. and R. Rhines. An inhibitory mechanism in the bulbar reticular formation. J. Neurophysiol 9: 165–171, 1946.PubMedGoogle Scholar
  125. 110.
    Merlet C., J. Hoerter, C. Devilleneuve, and C. Tchobroutsky. Mise en evidence de mouvements respiratoire chez le foetus d’agneau in utero au cours du dernier mois de la gestation. C. R. Acad. Sci. Paris 270: 2462–2464, 1970.Google Scholar
  126. 111.
    Merrill E.G. The lateral respiratory neurons of the medulla: their associations with ucleus ambiguus, nucleus retroambivalis, the spinal accessory nucleus and the spinal cord. Brain Res. 24: 11–28, 1970.PubMedCrossRefGoogle Scholar
  127. 112.
    Merrill E.G. Finding a respiratory function for the medullary respiratory neurons. In: Essays on the Nervous System, edited by R. Bellairs and E.G. Gray. Oxford: Clarendon Press, 1974, pp. 451–486.Google Scholar
  128. 113.
    Merrill E.G. Is there reciprocal inhibition between medullary inspiratory and expiratory neurones? In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz. Wenner-Gren International Symposium Series, vol. 32. Oxford: Pergamon Press, 1979, pp. 239–254.Google Scholar
  129. 114.
    Merrill E.G., L. Fedorko, L. Kubin, and J. Lipski. Origin of the expiratory inhibition of nucleus tractus solitarius inspiratory neurones. Brain Res. 263: 43–50, 1983.PubMedCrossRefGoogle Scholar
  130. 114a.
    Mitra J., N. Prabhakar, T. Pantaleo, Y. Yamamoto, M. Runold, E. v. Lunteren, C. v. Euler, and N. S. Cherniack. Do structures in the region of nucleus paragigantocellularis (nPG) integrate and mediate ventilatory drive inputs? Vol. 12, p. I. Society for Neuroscience Abstracts (16th Annual Meeting) 1986, p. 304.Google Scholar
  131. 115.
    Morin-Surun M., E. Boudinot, E. Champagnat, and M. Denavit-Saubié. Differentiation of two respiratory areas in the cat medulla using kainic acid. Respir. Physiol. 58: 323–334, 1984.PubMedCrossRefGoogle Scholar
  132. 116.
    Nashner L. M. Organization and programming of motor activity during posture control. In: Reflex Control of Posture and Movement, Progress in Brain Research, edited by R. Granit and O. Pompeiano. Vol. 50. Amsterdam: Elsevier, 1979, pp. 177–184.Google Scholar
  133. 117.
    Ngai S.H. and S. C. Wang. Organization of central respiratory mechanisms in the brain stem of the cat localization by stimulation and destruction. Am. J. Physiol. 190: 343–349, 1957.PubMedGoogle Scholar
  134. 118.
    Ogilvie M.D., A. Gottschalk, K. Anders, D.W. Richter, and A. I. Pack. A network model of respiratory rhythmogenesis. Am. J. Physiol. 263: R962 - R975, 1992.PubMedGoogle Scholar
  135. 119.
    Onimaru H. and I. Homma. Respiratory rhythm generator neurons in medulla of brainstem-spinal cord preparation from newborn rat. Brain Res. 403: 308–384, 1987.CrossRefGoogle Scholar
  136. 120.
    Onimaru H., A. Arata, I. Homma. Firing properties of respiratory rhythm generating neurons in the absence of synaptic transmission in rat medulla in vitro. Exp. Brain Res. 76: 530–536, 1989.PubMedCrossRefGoogle Scholar
  137. 121.
    Onimaru H. and I. Homma. Whole cell recordings from respiratory neurons in the medulla of brain stem-spinal cord preparations isolated from newborn rats. Pfluegers Arch. 420: 399–406, 1992.CrossRefGoogle Scholar
  138. 122.
    Orem J. The activity of late inspiratory cells during the behavioral inhibition of inspiration. Brain Res. 458: 224–230, 1988.PubMedCrossRefGoogle Scholar
  139. 123.
    Orem J. and R.H. Trotter. Postinspiratory neuronal activities during behavioral control, sleep, and wakefulness. J. App J. Physiol. 72 (6): 2369–2377, 1992.Google Scholar
  140. a.Otsuka H., S.G. E. Lindahl, H. Lagercrantz, and Y. Yamamoto. Effects of NMDA and non-NMDA receptor antagonists on inspiratory neurons in the in vitro brain stem-spinal cord preparation of newborn rat. Neurosci. Lett. 171: 94–96, 1994.CrossRefGoogle Scholar
  141. 124.
    Pantaleo T. and M. Corda. Expiration-related neurons in the region of the retrofacial nucleus: vagal and laryngeal inhibitory influences. Brain Res. 359: 343–356, 1985.PubMedCrossRefGoogle Scholar
  142. a.Pantaleo T. and M. Corda. Respiration-related neurons in the medial nuclear complex of the cat. Respir. Physiol. 64: 135–148, 1986.CrossRefGoogle Scholar
  143. 125.
    Pitts R. F. The differentiation of respiratory centers. Am. J. Physiol. 134: 192–201, 1941.Google Scholar
  144. 126.
    Poon C.S. Optimal control of ventilation in hypoxia, hypercapnia and exercise. In: B.J. Whipp and D.M. Wiberg. Modelling and Control of Breathing edited by Amsterdam: Elsevier, New York, 1983, pp. 189–196.Google Scholar
  145. 127.
    Poon C. Optimal control of ventilation in hypercapnia and exercise: an extended model. In: Concepts and Formalizations in the Control of Breathing, edited by G. Benchetrit, R. Baconnier, and J. Demongeot. Manchester: Manchester University Press, 1987, pp. 119–131.Google Scholar
  146. 128.
    Prabhakar N.R. Significance of excitatory and inhibitory neurochemicals in hypoxic chemotransmission of the carotid body. In: Control of Breathing: Modelling and Perspectives edited by Y. Honda. New York: Plenum Press, 1992.Google Scholar
  147. 129.
    Prabhakar N.R., G.K. Kumar, C.H. Chang, F.H. Agani, and M.A. Haxhiu. Nitric oxide in the sensory function of the carotid body. Brain Res. 625: 16–22, 1993.PubMedCrossRefGoogle Scholar
  148. 130.
    Prabhakar N. R., J. Mitra, and N.S. Cherniack. Role of substance P in hypercapnic excitation of carotid chemoreceptors. J. Appl. Physiol. 63: 2418–2425, 1987.PubMedGoogle Scholar
  149. 131.
    Remmers J. E., J. P. Baker Jr, and M. K. Younes. Graded inspiratory inhibition: the first stage of inspiratory “off-switching.” In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz. Wenner-Gren Center International Symposium Series, vol. 32. Oxford: Pergamon Press, 1979, pp. 195–201.Google Scholar
  150. 132.
    Remmers J. E., C. R. Bainton, D. Ballantyne, J. P. Klein, and D. W. Richter. Reflex prolongation of stage I of expiration. Pflügers Arch. 407: 190–198, 1986.PubMedCrossRefGoogle Scholar
  151. 133.
    Richter, D.W. Respiratory neural rhythmogenesis and afferent control. In: Human Physiology: From Cellular Mechanisms to Integration. Berlin: Springer Verlag, 1966 (in press).Google Scholar
  152. 134.
    Richter D.W. and D. Ballantyne. A three phase theory about the basic respiratory pattern generator. In: Central Neurone Environment and the Control Systems of Breathing and Circulation, edited by M.E. Schlaefke, H.P. Koepchen, and W.R. See. Berlin: Springer Verlag, 1983, pp. 164–174.CrossRefGoogle Scholar
  153. 135.
    Richter D. W., D. Ballantyne, and J. E. Remmers. The differential organization of medullary post-inspiratory activities. Pflügers Arch. 410: 420–427, 1987.PubMedCrossRefGoogle Scholar
  154. 136.
    Richter D. W., K. Ballanyi, and S.W. Schwartzacher. Mechanisms of respiratory rhythm generation, Curr. Opin. Neurobiol. 2: 788–793, 1992.CrossRefGoogle Scholar
  155. 137.
    Richter D.W., H. Camerer, M. Meesman, and N. Röhrig. Studies on the synaptic interconnection between bulbar respiratory neurones of cats. Pflügers Arch. 380: 245257, 1979.Google Scholar
  156. 138.
    Richter D.W., J. Champagnat, and S. Mifftin. Membrane properties involved in respiratory rhythm generation. In: Neurobiology of the Control of Breathing. edited by C. von Euler and H. Lagercrantz. Karolinska Institute Nobel Conference Series. New York: Raven Press, 1986, pp. 141–147.Google Scholar
  157. 139.
    Richter D. W., F. Heyde, and M. Gabriel. Intracellular recordings from different types of medullary respiratory neurons of the cat. J. Neurophysiol. 38: 1162–1171, 1975.Google Scholar
  158. 140.
    St. John W. M. Characterization of the tidal volume regulating function of the pneumotaxic center. Respir. Physiol. 18: 64–79, 1973.PubMedCrossRefGoogle Scholar
  159. 141.
    St. John W.M. Differing responses to hypercapnia and hypoxia following pneumotaxic center ablation. Respir. Physiol. 23: 1–9, 1975.CrossRefGoogle Scholar
  160. St. John W.M., D. Bartlett Jr., K.V. Knuth, and J.-C. Wang. Brain stem genesis of automatic ventilatory patterns independent of spinal mechanisms. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 51: 204–210, 1981.Google Scholar
  161. a.St. John W. M., Q. Hwang, E. E. Nattie, and D. Zhorn. Functions of the retrofacial nucleus in chemosensitivity and ventilatory neurogenesis. Respir. Physiol. 76: 159–172, 1989.Google Scholar
  162. 143.
    St. John W.M. and S.C. Wang. Alteration from apneusis to more regular rhythmic respiration in decerebrate cats. Respir. Physiol. 31: 91–106, 1977.CrossRefGoogle Scholar
  163. 144.
    Salmoiraghi G.C. and R. von Baumgarten. Intracellular potentials from respiratory neurones in brain-stem of cat and mechanism of rhythmic respiration. J. Neurophysiol. 24: 203–218, 1961.PubMedGoogle Scholar
  164. 145.
    Salmoiraghi G.C. and B.D. Burns. Notes on mechanism of rhythmic respiration. J. Neurophysiol. 23: 14–26, 1960.PubMedGoogle Scholar
  165. 146.
    Schlaefke M.E. Central chemosensitivity: a respiratory drive. Rev. Physiol. Biochem. Pharmacol. 909: 171–244, 1981.CrossRefGoogle Scholar
  166. 146a.
    Sears T.A. The respiratory motoneurone: integration at spinal at spinal segmental level. In: Breathlessness, edited by J.B.L. Howell and E.J.M. Campbell. Oxford: Blackwell Scientific Publications, 1966, pp. 33–47.Google Scholar
  167. 146b.
    Sears T.A. Breathing: a sensori motor act In The Scientific Basis of Medicine. Annual Reviews, edited by I. Gilliand and J. Francis. London: Athlone, 1971, pp. 129–147.Google Scholar
  168. 147.
    Segers L.S., S. Saporta, B.G. Lindsey, and R. Shannon. Functional associations among simultaneously monitored lateral medullary respiratory neurons in the cat. I. Evidence for excitatory and inhibitory actions of inspiratory neurons. J. Neurophysiol. 57: 1078 1100, 1987.Google Scholar
  169. 148.
    Sieck G.C., and R.M. Harper. Pneumotaxic area neuronal discharge during sleep-waking states in the cat. Exp. Neurol 67: 79–102, 1980.PubMedCrossRefGoogle Scholar
  170. 149.
    Smith J.C. and J.L. Feldman. In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J. Neurosci. Meth. 21: 321–333, 1987.CrossRefGoogle Scholar
  171. 150.
    Smith J.C., H. Ellenberger, K. Ballanyi, D.W. Richter, and J.L. Feldman. Pre-Bötzinger complex: a brain stem region that may generate respiratory rhythm in mammals. Science 254: 726–729, 1991.PubMedCrossRefGoogle Scholar
  172. 151.
    Smith J.C., J. Greer, G. Liu, and J.L. Feldman. Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal coard in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity. J. Neurophysiol. 64: 1149–1169, 1990.PubMedGoogle Scholar
  173. 151a.
    Speck D.F. Bötzinger complex region role in phrenic-to-phrenic inhibitory reflex of cat. J. Appl. Physiol. 67: 1364–1370, 1989.PubMedGoogle Scholar
  174. 152.
    Speck D.F. and J.L. Feldman. The effect of microstimulation and microlesions in the dorsal and ventral respiratory groups in medulla of cat. J. Neurosci. 2: 744–757, 1982.PubMedGoogle Scholar
  175. 153.
    Spyer K.M., D.S. McQueen, M.R. Dashwood, R.M. Sykes, M. de B. Daly, and J.R. Muddle. Localization of 125 I endothelin binding sites in the region of the carotid bifurcation and brain stem of the cat: possible baro-and chemoreceptor involvement. J. Cardiovas. Pharmacol. 17: S385 - S389. 1991.CrossRefGoogle Scholar
  176. 154.
    Srinivasan M., M. Goiny, T. Pantaleo, H. Lagercrantz, E. Brodin, M. Runold, and Y. Yamamoto. Enhanced in vivo release of substance P in the nucleus tactus solitarii during hypoxia in the rabbit: role of peripheral input. Brain Res. 546: 211–216, 1991.PubMedCrossRefGoogle Scholar
  177. 155.
    Srinivasan M., G.R. Srinivasan, A.A. Mathé, and E. Theodorsson. Endothelin concentrations in the respiration-related structures of the medulla during the perinatal period of the rat. Dev. Brain Res. 74: 117–121, 1993.CrossRefGoogle Scholar
  178. 156.
    Srinivasan M., Y. Yamamoto, H. Lagercrantz, and H. Persson. Effect of a non peptide substance P antagonist on neonatal preprotachykinin-A gene expression in respiration-related structures of the brain stem. In: International Symposium on Substance P and Related Peptides. Regulatory Peptides, Suppl. 1, S149, 1992.Google Scholar
  179. 157.
    Srinivasan M., Y. Yamamoto, H. Persson, and H. Lagercrantz. Birth-related activation of preprotachykinin-A mRNA in the respiratory neural structures of the rabbit. Pediat. Res.: 29: 369–371, 1991.Google Scholar
  180. 158.
    Stella G. On the mechanism of production, and the physiological significance of “apneusis.” J. Physiol. (Lond.) 93: 10–23, 1938.Google Scholar
  181. 159.
    Stella G. The dependence of the activity of the “apneustic centre” on the carbon dioxide of the arterial blood. J. Physiol. (Lond.) 93: 263–275, 1938.Google Scholar
  182. 159a.
    Strohl K.P., M.J. Hensley, M. Hallett, N.A. Saunders, and R.H. Ingram. Activation of upper airway muscles before onset of inspiration in normal humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 638–642, 1980.Google Scholar
  183. 160.
    Tang P.C. Localization of the pneumotaxic center in the cat. Am. J. Physiol. 172: 645–652, 1953PubMedGoogle Scholar
  184. 161.
    Tell F., A. Jean. Activation of N-methl-D aspartate receptors induces endogenous rhythmic bursting activities in nucleus tractur solitari neurons: An intracellular study on adult rat brain stem slices. Eur. J. Neurosci. 3: 1353–1365, 1991.PubMedCrossRefGoogle Scholar
  185. 162.
    Vibert J. F., D. Caille, A.S. Foutz, A. Hugelin, and M. F. Villard. Does a multi-oscillator system control respiratory frequency independently of ventilation? In: Concepts and Formalizations in the Control of Breathing, edited by P. Baconnier, G. Benchetrit, and J. Demongeot. Manchester: Manchester University Press, 1987, pp. 377–388.Google Scholar
  186. 163.
    Wang S.C., S.H. Ngai, and M.J. Frumin. Organization of central respiratory mechanisms in the brain stem of the cat: genesis of normal respiratory rhythmicity. Am. J. Physiol. 190: 333–342, 1957.PubMedGoogle Scholar
  187. 164.
    Ward D.G., A.M. Lefcourt, and D. S. Gann. Neurons in the dorsal rostral pons process information about changes in venous return and in arterial pressure. Brain Res. 181: 75–88, 1980.PubMedCrossRefGoogle Scholar
  188. 165.
    Wiener, N. Cybernetics or control and communication in the Animal and the Machine, 2d ed. Cambridge, MA: The MIT Press, 1961.Google Scholar
  189. 166.
    Yamamoto Y. and H. Lagercrantz. Some effects of substance P on central respiratory control in rabbit pups. Acta Physiol. Scand. 124: 449–455, 1985.PubMedCrossRefGoogle Scholar
  190. 167.
    Yamamoto Y., H. Onimaru, and I. Homma. Effect of substance P on respiratory rhythm and pre-inspiratory neurons in the ventrolateral structure of rostral medulla oblongata: an in vitro study. Brain Res. 599: 272–274, 1992.PubMedCrossRefGoogle Scholar
  191. 168.
    Yamashiro S.M., J.A. Daubenspeck, F.S. Grodins, and T. N. Lauritsen. Total work rate of breathing optimization in CO, inhalation and exercise. J. Appl. Physiol. 38: 702–709, 1975.PubMedGoogle Scholar
  192. 169.
    Yates F. E. Outline of physical theory of physiological systems. Can. J. Physiol. Pharmacol. 60: 1982, pp. 217–248.PubMedCrossRefGoogle Scholar
  193. 170.
    Younes M. K., J.P. Baker, and J.E. Remmers. Characteristics of inspiratory inhibition by phasic volume feedback in cats. J. Appl. Physiol. 45: 80–86, 1978.PubMedGoogle Scholar

Copyright information

© American Physiological Society 1996

Authors and Affiliations

  • Curt von Euler

There are no affiliations available

Personalised recommendations