Advertisement

Pulmonary Blood Flow and Gas Exchange

  • John B. West
Part of the People and Ideas book series (PEOPL)

Abstract

The fields of pulmonary blood flow and gas exchange are so vast that it has been necessary to be very selective. I have briefly reviewed some early historical developments because of both their intrinsic interest and the fact that early prejudices continue to surface from time to time. Interesting though somewhat anecdotal historical vignettes of research on the pulmonary circulation during the last 50 years have appeared recently (64), and there is an earlier account of aspects of the history of pulmonary gas exchange (71). I apologize in advance to those physiologists whose important contributions have not been included here.

Keywords

Pulmonary Vein Pulmonary Circulation Pulmonary Blood Flow Hypoxic Pulmonary Vasoconstriction Mixed Venous Blood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anthonisen N.R. and J. Milic-Emili. Distribution of pulmonary perfusion in erect man. J. Appl. Physiol. 21: 760–766, 1966.PubMedGoogle Scholar
  2. 2.
    Banister J. and R.W. Torrance. The effects of the tracheal pressure upon flow: Pressure relations in the vascular bed of isolated lungs. Q. J. Exp. Physiol. 45: 352–367, 1960.PubMedGoogle Scholar
  3. 3.
    Beck K. C. and K. Rehder. Differences in regional vascular conductances in isolated dog lungs. J. Appl. Physiol. 61: 530–538, 1986.PubMedGoogle Scholar
  4. 4.
    Bert P. La Pression Barométrique. Paris: Masson, 1878Google Scholar
  5. Bert P. English translation by M.A. Hitchcock and F.A. Hitchcock. Columbus, OH: College Book Co., 1943.Google Scholar
  6. 5.
    Bhattacharya J., S. Nanjo, and N.C. Staub. Micropuncture measurement of lung microvascular pressure during 5-HT infusion. J. Appl. Physiol. 52: 634–637, 1982.PubMedGoogle Scholar
  7. 6.
    Bohr C. Über die Lungenatmung. Skand. Arch. Physiol. 2: 236–268, 1891.CrossRefGoogle Scholar
  8. Bohr C. English translation in Translations in Respiratory Physiology, edited by J.B. West. Stroudsburg, PA: Dowden, Hutchinson and Ross, 1975. pp. 655–680.Google Scholar
  9. 7.
    Bohr C. Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten ze der durch die Alveolarwand stattfindenden Gasdiffusion. Skand. Arch. Physiol. 22: 221–280, 1909.CrossRefGoogle Scholar
  10. Bohr C. English translation in Translations in Respiratory Physiology, edited by J.B. West. Stroudsburg, PA: Dowden, Hutchinson and Ross, 1975. pp. 691–735.Google Scholar
  11. 8.
    Campbell E.J.M. The J. Burns Amberson Lecture-The management of acute respiratory failure in chronic bronchitis and emphysema. Am. Rev. Respir. Dis. 96: 626–639, 1967.PubMedGoogle Scholar
  12. 9.
    Dalton J.C. A Treatise on Human Physiology, 4th ed. Philadelphia: Henry C. Lea, 1867.Google Scholar
  13. 10.
    Duke H.N. Site of action of anoxia on the pulmonary blood vessels of the cat. J. Physiol. (Lond.) 125: 373–382, 1954.Google Scholar
  14. 11.
    Duomarco J. L. and R. Rimini. Energy and hydraulic gradients along systemic veins. Am. J. Physiol. 178: 215–220, 1954.PubMedGoogle Scholar
  15. 12.
    Enghoff H. Volumen inefficax. Emerkungen zur Frage des Schädlichen Raumes. Uppsala Lakarefoeren, Foerh. 44: 191, 1938.Google Scholar
  16. 13.
    Evans J. W. and P.D. Wagner. Limits on VA/Q distribution from analysis of experimental gas elimination. J. Appl. Physiol. 42: 889–898, 1977.PubMedGoogle Scholar
  17. 14.
    Ewan P. W., H.A. Jones, J. Nosil, J. Obdrzalek, and J.M.B. Hughes. Uneven perfusion and ventilation within lung regions studied with nitrogen-13. Respir.Physiol. 34: 45–59, 1978.PubMedCrossRefGoogle Scholar
  18. 15.
    Farhi L.E. Elimination of inert gas by the lung. Respir.Physiol. 3: 1–11, 1967.PubMedCrossRefGoogle Scholar
  19. 15a.
    Fick A. Ueber die messung des Blutquantums in den Herzvent rikeln. S.B. Phys.-med. Ges. Würzburg July 9, 1870.Google Scholar
  20. 16.
    Fishman, A.P. Pulmonary Circulation. In: The Respiratory System. Vol. 1: Circulation and Nonrespiratory Functions, edited by A.P. Fishman. Bethesda, MD: American Physiological Society, 1985.Google Scholar
  21. 17.
    Forssmann W. Die Sondierung des rechten Herzens. Klin. Wschr. 8: 2085, 1929.CrossRefGoogle Scholar
  22. 18.
    Forssmann W. Experiments on Myself. New York: St. Martin’s Press, 1974.Google Scholar
  23. 19.
    Glaister D.H. The effect of positive centrifugal acceleration upon the distribution of ventilation and perfusion within the human lung, and its relation to pulmonary arterial and intraoesophageal pressures. Proc. R. Soc. Lond. Ser. B 168: 311–334, 1967.CrossRefGoogle Scholar
  24. 20.
    Glenny R.W. and H.T. Robertson. Fractal properties of pulmonary blood flow: characterization of spatial heterogeneity. J. Appl. Physiol. 69: 532–545, 1990.PubMedGoogle Scholar
  25. 21.
    Grollman A. The Cardiac Output of Man in Health and Disease. Springfield, IL: Thomas, 1932.Google Scholar
  26. 22.
    Hakim, T.S., R. Lisbona, and G.W. Dean. Gravity-independent inequality in pulmonary blood flow in humans. J. Appl. Physiol. 63: 1114–1121, 1987.PubMedGoogle Scholar
  27. 23.
    Haldane J.S. and J.G. Priestley. Respiration, 2d ed. London and New York: Oxford University Press (Clarendon ), 1935.Google Scholar
  28. 24.
    Haldane J.S. and J.L. Smith. The absorption of oxygen by the lungs. J. Physiol. (Lond.) 22: 231–258, 1897.Google Scholar
  29. 25.
    Hales S. Vegetable Staticks. London: Innys and Innys, 1727.Google Scholar
  30. 26.
    Hales S. Statistical Essays Containing Haemastaticks. London: Innys and Manby, 1733.Google Scholar
  31. 27.
    Harvey W. The Works of William Harvey. Translated by R. Willis. Philadelphia: University of Pennsylvania Press, 1989.Google Scholar
  32. 28.
    Holt J.P. The collapse factor in the measurement of venous pressure. Am. J. Physiol. 134: 292–299, 1941.Google Scholar
  33. 29.
    Howell J.B.L., S. Permutt, D.F. Proctor, and R.L. Riley. Effect of inflation of the lungs on different parts of pulmonary vascular bed. J. Appl. Physiol. 16: 71–76, 1961.PubMedGoogle Scholar
  34. 30.
    Hughes J.M.B., J.B. Glazier, J.E. Maloney, and J.B. West. Effect of lung volume on the distribution of pulmonary blood flow in man. Respir. Physiol. 4: 58–72, 1968.PubMedCrossRefGoogle Scholar
  35. 31.
    Jones J.H., B.L. Smith, E.K. Birks, J.R. Pascoe, and T.R. Hughes. Left atrial and pulmonary arterial pressures in exercising horses. FASEB J. 6: A2020, 1992 (abstract).Google Scholar
  36. 32.
    Kelman G.R. Digital computer subroutine for the conversion of oxygen tension into saturation. J. Appl. Physiol. 21: 1375–1376, 1965.Google Scholar
  37. 33.
    Kety S. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 3: 1–41, 1951.PubMedGoogle Scholar
  38. a.Kim T.S., H. Rahn, and E. Farhil. Estimation of true venous and arterial Pco2 by gas analysis of a single breath. J. Appl. Physiol. 21: 1338–1344, 1966.Google Scholar
  39. 34.
    Krogh A. On the mechanism of gas exchange in the lungs. Skand. Arch. Physiol. 23: 248–278, 1910.CrossRefGoogle Scholar
  40. 35.
    Krogh A. and J. Lindhard. Measurements of the blood flow through the lungs of man. Skand. Arch. Physiol. 27: 100, 1912.CrossRefGoogle Scholar
  41. 36.
    Lee G.D. Exploration of an internal delta by a child of Serendip: Studies of the lung microcirculation. In: The Pulmonary Circulation and Gas Exchange, edited by W.W. Wagner and E.K. Weir. Armonk, NY: Futura Publishing Co., 1994.Google Scholar
  42. 37.
    Lee G.D. and A.B. Dubois. Pulmonary capillary blood flow in man. J. Clin. Invest. 34: 1380–1390, 1955.PubMedCrossRefGoogle Scholar
  43. 38.
    Lloyd T.C. Pulmonary vasoconstriction during histotoxic hypoxia. J. Appl. Physiol. 20: 488–490, 1965.PubMedGoogle Scholar
  44. 39.
    Lloyd T.C. Hypoxic pulmonary vasoconstriction: role of perivascular tissue. J. Appl. Physiol. 25: 560–565, 1968.PubMedGoogle Scholar
  45. 40.
    Macklin C.C. Evidence of increase in the capacity of the pulmonary arteries and veins of dogs, cats and rabbits during inflation of the freshly excised lung. Rev. Can. Biol. 5: 199–233, 1946.PubMedGoogle Scholar
  46. 41.
    Manohar M. Pulmonary artery wedge pressure increases with high-intensity exercise in horses. Am. J. Vet. Res. 54: 142–146, 1993.Google Scholar
  47. a.Markoff I., F. Müller, and N. Zuntz. Neue Methode zur Bestimmung der in menschlichen Körper umlaufenden Blutmenge. Z. Balneol. 4: 373–411, 1911.Google Scholar
  48. 42.
    Mead J. and Whittenberger, J.L. Lung inflation and hemodynamics. In: Handbook of Physiology, Respiration, edited by W.O. Fenn and H. Rahn. Washington, DC: American Physiological Society, 1964.Google Scholar
  49. 43.
    Olszowka A.J. and L.E. Farhi. A system of digital computer subroutines for blood gas calculations. Respir. Physiol. 4: 270–280, 1968.PubMedCrossRefGoogle Scholar
  50. 44.
    Otis A.B. and Rahn, H. Development of Concepts in Rochester, New York, in the 1940s. In: Pulmonary Gas Exchange. Vol. 1, Ventilation, Blood Flow, and Diffusion, edited by J.B. West. New York: Academic Press, 1980.Google Scholar
  51. 45.
    Permutt S., J.B.L. Howell, D.F. Proctor, and R.L. Riley. Effect of lung inflation on static pressure volume characteristics of pulmonary vessels. J. Appl. Physiol. 16: 64–70, 1961.PubMedGoogle Scholar
  52. 46.
    Permutt S., B. Bromberger-Barnea, and H.N. Bane. Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med. Thorac. 19: 239–260, 1962.PubMedGoogle Scholar
  53. 47.
    Prisk G.K., H.J.B. Guy, A.R. Elliott, R.A. Deutschman, III, and J.B. West. Pulmonary diffusing capacity, capillary blood volume and cardiac output during sustained microgravity. J. Appl. Physiol. 75: 15–26, 1993.PubMedGoogle Scholar
  54. 48.
    Prisk G.K., H.J.B. Guy, A.R. Elliott, R.A. Deutschman III, and J.B. West. Inhomogeneity of pulmonary perfusion during sustained microgravity on Spacelab SLS-1. J. Appl. Physiol. 76: 1730–1738, 1994.PubMedGoogle Scholar
  55. 49.
    Rahn H. A concept of mean alveolar air and the ventilation-bloodflow relationships during pulmonary gas exchange. Am. J. Physiol. 158: 21–30, 1949.PubMedGoogle Scholar
  56. 50.
    Rahn H. and W.O. Fenn. A Graphical Analysis of the Respiratory Gas Exchange; the 02–0O2 Diagram. Washington DC: American Physiological Society, 1955.Google Scholar
  57. 51.
    Rahn H. and A.B. Otis. Continuous analysis of alveolar gas composition during work, hyperpnea, hypercapnia and anoxia. J. Appl. Physiol. 1: 717–724, 1949.PubMedGoogle Scholar
  58. 52.
    Reeves J.T., B.M. Groves, A. Cymerman, et al. Operation Everest II: cardiac filling pressures during cycle exercise at sea level. Respir. Physiol. 80: 147–154, 1990.PubMedCrossRefGoogle Scholar
  59. 53.
    Riley R.L., D.D. Proemmel, and R.E. Franke. A direct method for determination of oxygen and carbon dioxide tensions in blood. J. Biol. Chem. 161: 621–633, 1945.PubMedGoogle Scholar
  60. 54.
    Riley R.L. Development of the Three-Compartment Model for Dealing with Uneven Distribution. In: Pulmonary Gas Exchange. Volume 1. Ventilation, Blood Flow, and Diffusion, edited by J.B. West. New York: Academic Press, 1980.Google Scholar
  61. 55.
    Riley R.L. and A. Cournand. “Ideal” alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J. Appl. Physiol. 1: 825–847, 1949.PubMedGoogle Scholar
  62. 56.
    Rodbard S. Flow through collapsible tubes: augmented flow resistance produced by resistance at the outlet. Circulation 11: 280–287, 1955.PubMedCrossRefGoogle Scholar
  63. 57.
    Rossier P.H. and E. Blickenstorfer. Espace mort et hyperventilation. Helv. Med. Acta 13: 328, 1946.PubMedGoogle Scholar
  64. 58.
    Singer C. A Short History of Anatomy and Physiology from the Greeks to Harvey New York: Dover, 1957.Google Scholar
  65. 59.
    Viault F. Sur l’augmentation considerable du nombre des globules rouges dans le sang chez les habitants des haut plateaux de l’Amerique du Sud. Compt. Rend. 3: 917–918, 1890.Google Scholar
  66. Viault F. English translation in High Altitude Physiology, edited by J. B. West. Stroudsburg, Pennsylvania: Hutchinson Ross Publishing Company, 1981.Google Scholar
  67. 60.
    von Euler U.S. and G. Liljestrand. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 12: 301–320, 1946.CrossRefGoogle Scholar
  68. 61.
    Wagner P.D., P. F. Naumann, and R.B. Laravuso. Simultaneous measurement of eight foreign gases in blood by gas chromatography. J. Appl. Physiol. 36: 600–605, 1974a.PubMedGoogle Scholar
  69. 62.
    Wagner P.D., H.A. Saltzman, and J.B. West. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J. Appl. Physiol. 36: 533–537, 1974b.PubMedGoogle Scholar
  70. 63.
    Wagner RD., G.E. Gale, R.E. Moon, J. R. Torre-Bueno, B.W. Stolp, and H.A. Saltzman. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J. Appl. Physiol. 61: 260–270, 1986.PubMedGoogle Scholar
  71. 64.
    Wagner W.W. and E.K. Weir. The Pulmonary Circulation and Gas Exchange. Armonk, NY: Futura Publishing Co., 1994.Google Scholar
  72. 65.
    West J.B., C.T. Dollery, and A. Naimark. Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive CO2. J. Appl. Physiol. 15: 405–410, 1960.PubMedGoogle Scholar
  73. 66.
    West J.B., C. T. Dollery, and A. Naimark. Distribution of blood flow in isolated lung: relation to vascular alveolar pressures. J. Appl. Physiol. 19: 713–724, 1964.PubMedGoogle Scholar
  74. 67.
    West J.B. Ventilation/Bloodflow and Gas Exchange. Oxford: Blackwell, 1965. Philadelphia: Lippincott, 1965.Google Scholar
  75. 68.
    West J.B. Ventilation-perfusion inequality and overall gas exchange in computer models of the lung. Respir. Physiol. 7: 88–110, 1969.PubMedCrossRefGoogle Scholar
  76. 69.
    West J. B. Effect of slope and shape of dissociation curve on pulmonary gas exchange. Respir. Physiol. 8: 66–85, 1970.CrossRefGoogle Scholar
  77. 70.
    West J.B., J. E. Maloney, and B. L. Castle. Effect of stratified inequality of bloodflow on gas exchange in liquid-filling lungs. J. Appl. Physiol. 32: 357–361, 1972.PubMedGoogle Scholar
  78. 71.
    West J.B. Historical development. In: Pulmonary Gas Exchange. Vol. 1, Ventilation, Bloodflow and Diffusion. Vol. 2, Organism and Environment. Edited by J.B. West. New York: Academic Press, 1980.Google Scholar
  79. 72.
    West J. B. Stephen Hales: neglected respiratory physiologist. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 57: 1625–1631, 1984.Google Scholar
  80. 73.
    West J. B. Spontaneous combustion, Dickens, Lewes, and Lavoisier. News Physiol. Sci. 9: 276–278, 1994Google Scholar
  81. 74.
    West J.B. and P.D. Wagner Ventilation-perfusion relationships. In: The Lung: Scientific Foundations, edited by R.G. Crystal, J.B. West, P.J. Barnes, N.S. Cherniack, and E.R. Weibel. New York: Raven Press, Ltd., 1991.Google Scholar
  82. 75.
    Younes M., Z. Bshouty, and J. Ali. Longitudinal distribution of pulmonary vascular resistance with very high pulmonary blood flow. J. Appl. Physiol. 62: 344–358, 1987.PubMedGoogle Scholar
  83. 76.
    Young J. Malpighi’s De Pulmonibus. R. Soc. Med. Proc. 23: 1–11, 1929.Google Scholar

Copyright information

© American Physiological Society 1996

Authors and Affiliations

  • John B. West

There are no affiliations available

Personalised recommendations