Assisted Mashup Development: On the Discovery and Recommendation of Mashup Composition Knowledge

  • Carlos Rodríguez
  • Soudip Roy Chowdhury
  • Florian Daniel
  • Hamid R. Motahari Nezhad
  • Fabio Casati


Over the past few years, mashup development has been made more accessible with tools such as Yahoo! Pipes that help in making the development task simpler through simplifying technologies. However, mashup development is still a difficult task that requires knowledge about the functionality of web APIs, parameter settings, data mappings, among other development efforts. In this work, we aim at assisting users in the mashup process by recommending development knowledge that comes in the form of reusable composition knowledge. This composition knowledge is harvested from a repository of existing mashup models by mining a set of composition patterns, which are then used for interactively providing composition recommendations while developing the mashup. When the user accepts a recommendation, it is automatically woven into the partial mashup model by applying modeling actions as if they were performed by the user. In order to demonstrate our approach we have implemented Baya, a Firefox plugin for Yahoo! Pipes that shows that it is indeed possible to harvest useful composition patterns from existing mashups, and that we are able to provide complex recommendations that can be automatically woven inside Yahoo! Pipes’ web-based mashup editor.


Service Composition Mining Algorithm Frequent Itemset Global Parameter Component Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the European Commission (project OMELETTE, contract 257635).


  1. 1.
    Beauche, S., Poizat, P.: Automated service composition with adaptive planning. In: ICSOC’08, pp. 530–537. Springer (2008). doi: 10.1007/978-3-540-89652-4_42
  2. 2.
    Carlson, M.P., Ngu, A.H., Podorozhny, R., Zeng, L.: Automatic mash up of composite applications. In: ICSOC’08, pp. 317–330, Springer (2008). doi: 10.1007/978-1-4614-7518-7_25
  3. 3.
    Chen, H., Lu, B., Ni, Y., Xie, G., Zhou, C., Mi, J., Wu, Z.: Mashup by surfing a web of data apis. In: VLDB’09, vol. 2, pp. 1602–1605 (2009).
  4. 4.
    De Angeli, A., Battocchi, A., Roy Chowdhury, S., Rodríguez, C., Daniel, F., Casati, F.: End-user requirements for wisdom-aware eud. In: IS-EUD’11. Springer (2011)Google Scholar
  5. 5.
    Elmeleegy, H., Ivan, A., Akkiraju, R., Goodwin, R.: Mashup advisor: A recommendation tool for mashup development. In: ICWS’08, pp. 337–344. IEEE Computer Society (2008). doi: 10.1109/ICWS.2008.128.
  6. 6.
    Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for mashups. In: VLDB’09, vol. 2, pp. 538–549 (2009).
  7. 7.
    Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In: BPM’08, pp. 4–19. Springer (2008). doi: 10.1007/978-1-4614-7518-7_4
  8. 8.
    Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process modeling support: method and user experience. In: ER’08, pp. 265–278. Springer (2008)Google Scholar
  9. 9.
    Riabov, A.V., Boillet, E., Feblowitz, M.D., Liu, Z., Ranganathan, A.: Wishful search: interactive composition of data mashups. In: WWW’08, pp. 775–784. ACM (2008). doi: 10.1145/1367497.1367602
  10. 10.
    Roy Chowdhury, S., Daniel, F., Casati, F.: Efficient, interactive recommendation of mashup composition knowledge. In: ICSOC’11, pp. 374–388. Springer (2011)Google Scholar
  11. 11.
    Roy Chowdhury, S., Rodríguez, C., Daniel, F., Casati, F.: Baya: assisted mashup development as a service. In: WWW’12 (2012)Google Scholar
  12. 12.
    Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process models. In: ICSOC-ServiceWave’09, pp. 115–129. Springer (2009). doi: 10.1007/978-1-4614-7518-7_8
  13. 13.
    Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2005)Google Scholar
  14. 14.
    Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14, 5–51 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Carlos Rodríguez
    • 1
  • Soudip Roy Chowdhury
    • 1
  • Florian Daniel
    • 1
    • 2
  • Hamid R. Motahari Nezhad
    • 3
  • Fabio Casati
    • 1
  1. 1.University of Trento PovoItaly
  2. 2.Dipartimento di Ingegneria e Scienza dell’InformazioneUniversità di TrentoPovoItaly
  3. 3.Hewlett Packard LabsPalo AltoUSA

Personalised recommendations