Advertisement

Anion Exchanges and Band 3 Protein

  • Aser Rothstein
Part of the People and Ideas book series (PEOPL)

Abstract

The anion-exchange system of the red blood cell, mediated by the transport protein band 3, has been the subject of intensive investigation for the past decade. Consequently numerous reviews have appeared, and no shortage of source material exists for those who are interested. The bibliography in this chapter includes thirty-six reviews or quasi-reviews (symposium articles) and there are others that are not cited. Clearly band 3—anion transport is an adequately if not overreviewed topic. Why then undertake yet another? Most reviews incorporate a catalogue of relevant research and/or an assembly of information supporting particular models, hypotheses, or points of view in various mixtures. The impression is usually given that a logical progression of ideas propelled by intelligent analysis provides increasing insight into particular biological mysteries. In real life, of course, research is not quite like that. There is a lot of stumbling and fumbling, unexpected results, and chance events that provide considerable impact. In this chapter I tell the story of how and why research on anion exchange came to be done, rather than to simply summarize what has been done and what conclusions can be reached. I attempt to place the development of knowledge of the anion-exchange system in some historical perspective and to describe events and people that substantially influenced the early directions of the research and its ultimate outcome. In doing so I present a highly personal view of the research developments and how they came about. I cannot claim to be a completely objective historian because I was a participant as well as an observer, so this effort is also something of a personal history. Undoubtedly I was unaware of certain influences that shaped the research effort; thus my history may be somewhat flawed and incomplete. I hope, however, that it is at least entertaining. Much of the paper is concerned with earlier events that in retrospect proved to be important. The mainstream of current research is also considered, but largely in the context of its historical origins. (For current status of the field see refs. 35, 38, 39, 56, 66.)

Keywords

Anion Exchange Human Erythrocyte Anion Transport Disulfonic Acid Human Erythrocyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Bender, W. W., H. Garan, and H. C. Berg. Proteins of the human erthrocyte membrane as modified by pronase. J. Mol. Biol. 58: 783797, 1971.Google Scholar
  2. 2.
    Bennett, V., and P. J. Stenbuck. The membrane attachment protein for spectrin is associated with band 3 in human erthrocyte membranes. Nature Lond. 280: 468–473, 1979.PubMedCrossRefGoogle Scholar
  3. 3.
    Berg, H. C., J. M. Diamond, and P. S. Marfey. Erythrocyte membrane: chemical modification. Science Wash. DC 150: 64–66, 1965.CrossRefGoogle Scholar
  4. 4.
    Bodemann, H., and H. Passow. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonie hemolysis. J. Membr. Biol. 8: 1–26, 1972.PubMedCrossRefGoogle Scholar
  5. 5.
    Boodhoo, A., and R. A. Reithmeier. Characterization of matrix-bound band 3, the anion transport protein from human erythrocyte membranes. J. Biol. Chem. 259: 785–790, 1984.PubMedGoogle Scholar
  6. 6.
    Bretscher, M. S. Human erythrocyte membranes: specific labelling of surface proteins. J. Mol. Biol. 58: 775–781, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Bursaux, E., M. Hilly, A. Bluze, and C. Poyart. Organic phosphates modulate anion self-exchange across the human erythrocyte membrane. Biochim. Biophys. Acta 777: 253–260, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Cabantchik, Z. I., M. Balshin, W. Breuer, and A. Rothstein. Pyridoxal phosphate. An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells. J. Biol. Chem. 250: 5130–5136, 1975.PubMedGoogle Scholar
  9. 9.
    Cabantchik, Z. I., P. A. Knauf, T. Ostwald, H. Markus, L. Davidson, W. Breuer, and A. Rothstein. The interaction of an anionic photo-reactive probe with the anion transport system of the human red blood cell. Biochim. Biophys. Acta 455: 526–537, 1976.PubMedCrossRefGoogle Scholar
  10. 10.
    Cabantchik, Z. I., P. A. Knauf, and A. Rothstein. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes.” Biochim. Biophys. Acta 515: 239–302, 1978.Google Scholar
  11. 11.
    Cabantchik, Z. I., and A. Rothstein. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membr. Biol. 10: 311–330, 1972.PubMedCrossRefGoogle Scholar
  12. 12.
    Cabantchik, Z. I., and A. Rothstein. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol. 15: 207–226, 1974.PubMedCrossRefGoogle Scholar
  13. 13.
    Cabantchik, Z. I., and A. Rothstein. Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J. Membr. Biol. 15: 227–248, 1974.PubMedCrossRefGoogle Scholar
  14. 14.
    Cabantchik, Z. I., D. J. Volsky, H. Ginsburg, and A. Loyter. Reconstitution of the erythrocyte anion transport system: in vitro and in vivo approaches. Ann. NY Acad. Sci. 341: 444–454, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Cox, J. V., R. T. Moon, and E. Lazarides. Anion transporter: highly cell-type-specific expression of distinct polypeptides and transcripts in erythroid and non-erythroid cells. J. Cell Biol. 100: 1548–1577, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Dalmark, M. Chloride in the human erythrocyte: distribution and transport between cellular and extracellular fluids and structural features of the cell membrane. Prog. Biophys. Mol. Biol. 31: 145–164, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Deuticke, B. Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev. Physiol. Biochem. Pharmacol. 78: 1–97, 1977.PubMedCrossRefGoogle Scholar
  18. 18.
    Drickamer, K. Arrangement of the red cell anion transport protein in the red cell membrane: investigation by chemical labelling methods. Ann. Nyacad. Sci. 341: 419–432, 1980.CrossRefGoogle Scholar
  19. 19.
    Fairbanks, G., T. L. Steck, and D. F. H. Wallach. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606–2617, 1971.PubMedCrossRefGoogle Scholar
  20. 20.
    Falke, J. J., and S. I. Chan. Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35C1 Nmr study. J. Biol. Chem. 260: 9537–9544, 1985.PubMedGoogle Scholar
  21. 21.
    Falke, J. J., K. J. Kanes, and S. I. Chan. The minimal structure containing the band 3 anion transport site. A 35C1 Nmr study. J. Biol. Chem. 260: 13294–13303, 1985.PubMedGoogle Scholar
  22. 22.
    Forman, S. A., A. S. Verkman, J. A. Dix, and A. K. Solomon. N-alkanols and halothane inhibit red cell anion transport and increase band 3 conformational rate change. Biochemistry 24: 4859–4866, 1985.PubMedCrossRefGoogle Scholar
  23. 23.
    Fortes, P. A. Anion movements in red cells. In: Membrane Transport in Red Cells, edited by J. C. Ellory and V. L. Lew. New York: Academic, 1977, p. 175–195.Google Scholar
  24. 24.
    FRÖHlich, O. The external anion binding site of the human erythrocyte anion transporter: Dnds binding and competition with chloride. J. Membr. Biol. 45: 111–123, 1982.Google Scholar
  25. 25.
    FRÖHlich, O. Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes. J. Gen. Physiol. 84: 877–893, 1984.PubMedCrossRefGoogle Scholar
  26. 26.
    Furuya, W., T. Tarshis, F. Y. Law, and P. A. Knauf. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2Dids. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J. Gen. Physiol. 83: 657–681, 1984.PubMedCrossRefGoogle Scholar
  27. 27.
    Garfield, E. Abcs of cluster mapping. II. Most-active fields in the physical sciences in 1978. Curr. Contents 41: 5–12, 1980.Google Scholar
  28. 28.
    Grinstein, S., L. Mcculloch, and A. Rothstein. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. J. Gen. Physiol. 73: 493–514, 1979.PubMedCrossRefGoogle Scholar
  29. 29.
    Grinstein, S., S. Ship, and A. Rothstein. Anion transport in relation to proteolytic dissection of band 3 protein. Biochim. Biophys. Acta 507: 294–304, 1978.CrossRefGoogle Scholar
  30. 30.
    Guidotti, G. The structure of intrinsic membrane proteins. J. Supra-mol. Struct. 7: 489–497, 1977.CrossRefGoogle Scholar
  31. 31.
    GuNN, R. B. Considerations of the titratable carrier model for sulfate transport in human red blood cells. In: Membrane Transport Processes, edited by D. C. Tosteson, A. Yu, and R. L. Ovchinnikov. New York: Raven, 1978, p. 61–77.Google Scholar
  32. 32.
    Gunn, R. B. Transport of anions across red cell membranes. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer-Verlag, 1979, vol. 2, p. 59–79.Google Scholar
  33. 33.
    GuNN, R. B., and O. FRÖHlich. Asymmetry in the mechanism for anion exchange in human red cell membranes. Evidence for reciprocating sites that react with one transported ion at a time. J. Gen. Physiol. 74: 351–374, 1979.CrossRefGoogle Scholar
  34. 34.
    GuNN, R. B., and O. FRÖHlich. The kinetics of the titratable carrier for anion exchange in erythrocytes. Ann. NY Acad. Sci. 341: 384–393, 1980.CrossRefGoogle Scholar
  35. 35.
    Gunn, R. B., and O. FRÖHlich. Arguments in support of a single transport site on each anion transporter in human red cells. In: Chloride Transport in Biological Membranes, edited by J. A. Zaidunaisky. New York: Academic, 1982, p. 33–59.CrossRefGoogle Scholar
  36. 36.
    Ho, M., and G. GuIDoTti. A membrane protein from human erythrocytes involved in anion exchange. J. Biol. Chem. 250; 675–683, 1975.Google Scholar
  37. 37.
    Jennings, M. L. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. J. Gen. Physiol. 79: 169185, 1982.Google Scholar
  38. 38.
    Jennings, M. L. Oligomeric structure and the anion transport function of human erythrocyte band 3 protein. J. Membr. Biol. 80: 105–117, 1984.PubMedCrossRefGoogle Scholar
  39. 39.
    Jennings, M. L. Kinetics and mechanism of anion transport in red blood cells. Annu. Rev. Physiol. 47: 519–533, 1985.CrossRefGoogle Scholar
  40. 40.
    Jennings, M. L., M. Adams-Lackey, and G. H. Denny. Peptides of human erythrocyte band 3 protein produced by extracellular papain cleavage. J. Biol. Chem. 259: 4652–4660, 1984.PubMedGoogle Scholar
  41. 41.
    Jennings, M. L., R. Monaghan, M. S. Douglas, and J. S. Micknish. Functions of extracellular lysine residues in the human erythrocyte anion transport protein. J. Gen. Physiol. 86: 653–669, 1985.PubMedCrossRefGoogle Scholar
  42. 42.
    Jennings, M. L., and H. Passow. Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4’-diisothiocyano dihydrostilbene-2,2’-disulfonate. Biochim. Biophys. Acta 554: 498–519, 1979.PubMedCrossRefGoogle Scholar
  43. 43.
    Juliano, R. L. The proteins of the erythrocyte membrane. Biochim. Biophys. Acta 300: 341–378, 1973.PubMedCrossRefGoogle Scholar
  44. 44.
    Kaplan, J. H., M. Pring, and H. Passow. Band-3 protein-mediated anion conductance of the red cell membrane. Slippage vs. ionic diffusion. Febs Lett. 156: 175–179, 1983.PubMedCrossRefGoogle Scholar
  45. 45.
    Knauf, P. A. Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure. Curr. Top. Membr. Transp. 12: 251–363, 1979.Google Scholar
  46. 46.
    Knauf, P. A., G. F. Fuhrmann, S. Rothstein, and A. Rothstein. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J. Gen. Physiol. 69: 363–386, 1977.PubMedCrossRefGoogle Scholar
  47. 47.
    Knauf, P. A., and F. Y. Law. Relationship of net anion flow to the anion exchange system. In: Membrane Transport in Erythrocytes, edited by V. V. Lassen, H. H. Ussing, and J. O. Wieth. Copenhagen: Munksgaard, 1980, p. 488–493. (Alfred Benzon Symp., no. 14.)Google Scholar
  48. 48.
    Knauf, P. A., F. Y. Law, and P. J. Marchant. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J. Gen. Physiol. 81: 95–126, 1983.PubMedCrossRefGoogle Scholar
  49. 49.
    Knauf, P. A., F. Y. Law, T. Tarshis, and W. Furuya. Effects of the transport site conformation on the binding of external Nap-taurine to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry. J. Gen. Physiol. 83: 683–701, 1984.PubMedCrossRefGoogle Scholar
  50. 50.
    Knauf, P. A., and N. A. Mann. Use of niflumic acid to determine the nature of the asymmetry of human erythrocyte anion exchange system. J. Gen. Physiol. 83: 703–725, 1984.PubMedCrossRefGoogle Scholar
  51. 51.
    Knauf, P. A., and N. A. Mann. Location of the chloride self-inhibitory site of the human erythrocyte anion exchange system. Am. J. Physiol. 251 (Cell Physiol. 20): C1—C9, 1986Google Scholar
  52. 52.
    Knauf, P. A., and Rothstein, A. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J. Gen. Physiol. 58: 190210, 1971.Google Scholar
  53. 53.
    KoPito, R. R., and H. F. LoDisch. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature Lond. 316: 234–238, 1985.CrossRefGoogle Scholar
  54. 54.
    Lassen, U. V., L. Pape, and B. Vestergarrd-Bogind. Chloride conductance of the Amphiuma red cell membrane. J. Membr. Biol. 39: 27–48, 1978.CrossRefGoogle Scholar
  55. 55.
    Lepke, S., H. Fasold, M. Pring, and H. Passow. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4’-diisothiocyanostilbene-2,2’-disulfonic acid (Dids) and of its dihydro derivative (H2Dids). J. Membr. Biol. 29: 147–177, 1976.PubMedCrossRefGoogle Scholar
  56. 56.
    Macara, I. G., and L. C. Cantley. The structure and function of band 3. In: Cell Membranes: Methods and Review, edited by E. Elson, W. Frazier, and L. Glaser. New York: Plenum, 1983, vol 1., p. 41–87.Google Scholar
  57. 57.
    Maddy, H. A fluorescent label for the outer components of the erythrocyte membrane. Biochim. Biophys. Acta 88: 390–399, 1964.Google Scholar
  58. 58.
    Matsuyama, H., Y. Kawano, and N. Hamasaki. Anion transport activity in the human erythrocyte membrane modulated by proteolytic digestion of the 38,000 dalton fragment in band 3. J. Biol. Chem. 258: 15376–15381, 1983.PubMedGoogle Scholar
  59. 59.
    Morn, R. Umkehr der Anionenpermeabilitat der roten Blutkörperchen in eine elektive Durchlässigkeit für Kationen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 217: 618–630, 1927.Google Scholar
  60. 60.
    MoTais, R., and J. L. Cousin. A structure activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: influence of ring substituents. In: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach, edited by R. W. Straub and L. Bolis. New York: Raven, 1978, p. 219–225.Google Scholar
  61. 61.
    Oikawa, K., D. M. Lieberman, and R. A. F. Reithmeier. Conformation and stability of the anion transport protein of human erythrocyte membranes. Biochemistry, 24: 2843–2848, 1985.PubMedCrossRefGoogle Scholar
  62. 62.
    Passow, H. Passive ion permeability of the erythrocyte membrane: an assessment of the scope and limitations of the fixed charge hypothesis. Prog. Biophys. Mol. Biol. 19: 423–467, 1969.PubMedCrossRefGoogle Scholar
  63. 63.
    Passow, H. Effects of pronase on passive ion permeability of the human red blood cell. J. Membr. Biol. 6: 233–258, 1971.CrossRefGoogle Scholar
  64. 64.
    Passow, H. The binding of 1-fluoro-2,4-dinitrobenzene and of certain stilbene-2,2’-disulfonic acids to anion permeability-controlling sites on the protein in band 3 of the red blood cell membrane. In: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach, edited by R. W. Straub and L. Bolis. New York: Raven, 1978, p. 203–218.Google Scholar
  65. 65.
    Passow, H. Anion-transport-related conformational changes of the band 3 protein in the red blood cell membrane. In: Membranes and Transport, edited by A. N. Martonosi. New York: Plenum, 1982, vol. 2, p. 451–460.Google Scholar
  66. 66.
    Passow, H. Molecular aspects of band 3 protein mediated anion transport across the red blood cell membrane. Rev. Physiol. Biochem. Phar,nacol. 103: 61–203, 1986.Google Scholar
  67. 67.
    Passow, H., H. Fasold, S. Lepke, M. Pring, and B. Schuhmann. Chemical and enzymic modification of membrane proteins and anion trans[232] port in human red blood cells. In: Membrane Toxicity, edited by M. W. Miller and A. E. Shamoo. New York: Plenum, 1977, p. 353–377.CrossRefGoogle Scholar
  68. 68.
    Passow, H., H. Fasold, L. Zaki, B. Schuhmann, and S. Lepke. Membrane proteins and anion exchange in human erythrocytes. In: Biomembranes: Structure and Function, edited by G. Gardos and I. Szasz. Amsterdam: North-Holland, 1975, p. 197–214.Google Scholar
  69. 69.
    Passow, H., L. Kampmann, H. Fasold, M. Jennings, and S. Lepke. Relations between function and molecular structure. In: Membrane Transport in Erythrocytes, edited by V. V. Lassen, H. H. Ussing, and J. O. Wieth. Copenhagen: Munksgaard, 1980, p. 354–367. (Alfred Benzon Symp., no. 14.)Google Scholar
  70. 70.
    Passow, H., A. Rothstein, and T. W. Clarkson. The general pharmacology of the heavy metals. Pharmacol. Rev. 13: 185–224, 1961.PubMedGoogle Scholar
  71. 71.
    Passow, H., and P. G. WooD. Current concepts of the mechanism of anion permeability. In: Drugs and Transport Processes, edited by B. A. Callingham. London: Macmillan, 1974, p. 149–171.Google Scholar
  72. 72.
    Passow, H., and L. Zaki. Studies on the molecular mechanism of anion transport across the red blood cell membrane. In: Molecular Specialization and Symmetry in Membrane Function, edited by A. K. Solomon and M. Karnovsky. Cambridge, MA: Harvard Univ. Press, 1978, p. 229–250.Google Scholar
  73. 73.
    Ramjeesingh, M., A. Gaarn, and A. Rothstein. The amino acid conjugate formed by the interaction of the anion transport inhibitor 4,4’diisothiocyano-2,2 stilbenedisulfonic acid (Dids) with band 3 protein from human red blood cell membranes. Biochim. Biophys. Acta 641: 173–182, 1981.PubMedCrossRefGoogle Scholar
  74. 74.
    Ramjeesingh, M., A. Gaarn, and A. Rothstein. Pepsin cleavage of band 3 produces its membrane-crossing domains. Biochim. Biophys. Acta 769: 381–389, 1984.CrossRefGoogle Scholar
  75. 75.
    Reithmeier, R. A. F. Fragmentation of the band 3 polypeptide from human erythrocyte membranes. Size and detergent binding of the membrane-associated domain. J. Biol. Chem. 254: 3054–3060, 1979.Google Scholar
  76. 76.
    Rothstein, A. Sulfhydryl groups in cell membrane structure and function. Curr. Top. Membr. Transp. 1: 1–76, 1970.Google Scholar
  77. 77.
    Rothstein, A. The functional roles of band 3 protein of the red blood cell. In: Molecular Specialization and Symmetry in Membrane Function, edited by A. K. Solomon and M. Karnovsky. Cambridge, MA: Harvard Univ. Press, 1978, p. 128–159.Google Scholar
  78. 78.
    Rothstein, A. Functional structure of band 3, the anion transport protein of the red blood cells, as determined by proteolytic and chemical cleavages. In: Membranes and Transport, edited by A. N. Martonosi. New York: Plenum, vol. 2, 1982, p. 435–440.Google Scholar
  79. 79.
    Rothstein, A. Membrane mythology: technical versus conceptual developments in the progress of research. Can. J. Biochem. Cell Biol. 62: 1111–1120, 1984.PubMedCrossRefGoogle Scholar
  80. 80.
    Rothstein, A., and Z. I. Cabantchik. Protein structures involved in the anion permeability of the red blood cell membrane. In: Comparative Biochemistry and Physiology of Transport, edited by L. Bolis, K. Bloch, S. E. Luria, and F. Lynen. Amsterdam: North-Holland, 1974, p. 354362.Google Scholar
  81. 81.
    Rothstein, A., Z. I. Cabantchik, M. Balshin, and R. Juliano. Enhance ment of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cells. Biochem. Biophys. Res. Commun. 64: 144–150, 1975.CrossRefGoogle Scholar
  82. 82.
    Rothstein, A., Z. I. Cabantchik, and P. Knauf. Mechanisms of anion transport in red blood cells: role of membrane proteins. Federation Proc. 35: 3–10, 1976.Google Scholar
  83. 83.
    Rothstein, A., S. Grinstein, S. Ship, and P. A. Knauf. Asymmetry of functional sites of the erythrocyte anion transport protein. Trends Biochem. Sci. 3: 126–128, 1978.CrossRefGoogle Scholar
  84. 84.
    Rothstein, A., and M. Ramjeesingh. The functional arrangement of the anion channel of red blood cells. Ann. NY Acad. Sci. 358: 1–12, 1980.PubMedCrossRefGoogle Scholar
  85. 85.
    Rothstein, A., and M. Ramjeesingh. The red cell band 3 protein: its role in anion transport. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299: 497–507, 1982.CrossRefGoogle Scholar
  86. 86.
    Schnell, K. F., W. Elbe, J. KÄSbauer, and E. Kaufmann. Electron spin resonance studies of the inorganic anion-transport system of the human red blood cell: binding of a disulfonatostilbene spin label (Ndstempo) and inhibition of anion transport. Biochim. Biophys. Acta 732: 266–275, 1983.PubMedCrossRefGoogle Scholar
  87. 87.
    Schnell, K. F., S. Gerhardt, and A. Schoppe-Fredenburg. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts. J. Membr. Biol. 301: 319–350, 1977.Google Scholar
  88. 88.
    Shami, Y., J. A. Carver, S. Ship, and A. Rothstein. Inhibition of a binding to anion transport protein of the red blood cell by Dids (4,4’diisothiocyano-2,2’-stilbene disulfonic acid) measured by (35C1)Nmr. Biochem. Biophys. Res. Commun. 76: 429–436, 1977.CrossRefGoogle Scholar
  89. 89.
    Shami, Y., A. Rothstein, and P. A. Knauf. Identification of the a transport site of human red blood cells by a kinetic analysis of the inhibitory effects of a chemical probe. Biochim. Biophys. Acta 508: 357–363, 1978.CrossRefGoogle Scholar
  90. 90.
    Ship, S., Y. Shami, W. Breuer, and A. Rothstein. Synthesis of tritiated 4,4’-diisothiocyano-2,2’-stilbene disulfonic acid ([3H]Dids) and its covalent reaction with sites related to anion transport in human red blood cells. J. Membr. Biol. 33: 311–324, 1977.PubMedCrossRefGoogle Scholar
  91. 91.
    Solomon, A. K., B. Chasson, J. A. DIx, M. F. Lukavic, M. R. TooN, and A. S. Verkman. The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann. NY Acad. Sci. 414: 97–124, 1983.PubMedCrossRefGoogle Scholar
  92. 92.
    Staros, J. V., and F. M. Richards. Photochemical labelling of the surface proteins of human erythrocytes. Biochemistry 13: 2720–2726, 1974.PubMedCrossRefGoogle Scholar
  93. 93.
    Steck, T. L. The organization of proteins in the human red blood cell membrane. J. Cell Biol. 62: 1–19, 1974.PubMedCrossRefGoogle Scholar
  94. Steck, T. L. Preparation of impermeable inside-out vesicles from erythrocyte membranes. In: Methods in Biology, edited by E. D. Korn. New York: Plenum, 1974, vol. 2, p. 245–281.Google Scholar
  95. 95.
    Steck, T. L. The band 3 protein of the human red cell membrane: a review. J. Supramol. Struct. 8: 311–324, 1978.PubMedCrossRefGoogle Scholar
  96. 96.
    Tanner, M. J. A. Isolation of integral membrane proteins and criteria for identifying carrier proteins. Curr. Top. Membr. Transp. 12: 279325, 1979.Google Scholar
  97. 97.
    Tanner, M. J. A., D. G. Williams, and R. E. Jenkins. Structure Of the erythrocyte anion transport protein. Ann. NY Acad. Sci. 341: 455464, 1980.Google Scholar
  98. 98.
    TosTeson, D. C. Halide transport in red blood cells. Acta Physiol. Scand. 46: 19–41, 1959.CrossRefGoogle Scholar
  99. 99.
    Wieth, J. O. The selective ion permeability of the red cell membrane. In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, edited by M. Rorth and P. Astrup. Copenhagen: Munksgaard, 1972, p. 265–278.Google Scholar
  100. 100.
    Wieth, J. O., O. S. Anderson, J. Brahm, P. J. Bjerruin, and C. C. Borders, JR. Chloride-bicarbonate exchange in red blood cells: physiology of transport and chemical modification binding sites. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299: 383–399, 1982.CrossRefGoogle Scholar
  101. 101.
    Wieth, J. O., J. Brahm, and J. Funder. Transport and interactions of anions and protons in the red blood cell membrane. Ann. NY Acad. Sci. 341: 394–418, 1980.PubMedCrossRefGoogle Scholar
  102. 102.
    Wieth, J. O., and M. T. Tosteson. Organotin-mediated exchange diffusion of anions in human red cells. J. Gen. Physiol. 73: 765–788, 1979.PubMedCrossRefGoogle Scholar
  103. 103.
    Zaki, L., and T. Julien. Anion transport in red blood cells and argininespecific reagents. Interaction between the substrate binding site and the binding site of arginine-specific reagents. Biochim. Biophys. Acta 818: 325–332, 1985.PubMedCrossRefGoogle Scholar
  104. 104.
    Zanner, M. A., and W. R. Gary. Aged human erythrocytes exhibit increased anion exchange. Biochim. Biophys. Acta 818: 310–315, 1985.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 1989

Authors and Affiliations

  • Aser Rothstein

There are no affiliations available

Personalised recommendations