Skip to main content

Epithelial Transport: Frog Skin as a Model System

  • Chapter
Membrane Transport

Part of the book series: People and Ideas ((PEOPL))

Abstract

For nearly four decades the isolated frog skin has played an important role as a model system for studies of epithelial electrolyte transport. Actually, the preparation had provided valuable Epithelial observations much earlier. Galeotti (8) had demonstrated that the Transport potential difference (inside positive) across the skin depended on the presence of Na+ (or Li+) in the outside medium. Huf (14) showed by direct chemical analysis that the frog skin could bring about a net Cl transport from the outside in when bathed on both sides with Ringer’s solution. A few years later Krogh (26, 27) showed that salt-depleted frogs could take up both Cl and Na+ from exceedingly dilute solutions. It was, however, the advent of suitable isotopic tracers for Na+, Cl, and K+ that made possible a detailed kinetic analysis of the electrolyte transport processes, and this period started just after the Second World War.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Conway, E. J. Some aspects of ion transport through membranes. Symp. Soc. Exp. Biol. 8: 297–324, 1954.

    CAS  Google Scholar 

  2. DöRRge, A., R. Rick, U. Katz, and K. Thurau. Determination of intracellular electrolyte concentration in amphibian epithelia with the electron microprobe analysis. In: Water Transport Across Epithelia,edited by H. H. Ussing, N. Bindslev, N. A. Lassen, and O. Sten-Knudsen. Copenhagen: Munksgaard, 1981. (Alfred Benzon Symp. 15.)

    Google Scholar 

  3. Du Bois-Reymond, E. Untersuchungen über Tierische Elektrizitat, Berlin: 1848.

    Google Scholar 

  4. Eskesen, K., J. J. Lim, and H. H. UssIng. Evaluation of transport pathways for Ne across frog skin epithelium by means of pre-steady state flux ratio. J. Membr. Biol. 86: 99–104, 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Eskesen, K., and H. H. Ussing. Single-file diffusion through K+-channels in frog skin epithelium. J. Membr. Biol. 91: 245–250, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Farquhar, M. G., and G. E. Palade. Functional organization of amphibian skin. Proc. Natl. Acad. Sci. Usa 51: 569–577, 1964.

    Article  PubMed  CAS  Google Scholar 

  7. Ferreira, K. T., and H. G. Ferreira. The regulation of volume and ion composition in frog skin. Biochim. Biophys. Acta 646: 193–202, 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Foskett, J. K., and H. H. UssIng. Localization of chloride conductance to mitochondria-rich cells in frog skin epithelium. J. Membr. Biol. 91: 251–258, 1986.

    Article  PubMed  CAS  Google Scholar 

  9. Galeotti, G. Concerning the E. M. F. which is generated at the surface of animal membranes on contact with different electrolytes. Z. Phys. Chem. 49: 542–562, 1904.

    Google Scholar 

  10. Geck, P., and E. Heinz. Coupling of ion flows in cell suspension systems. Ann. NY Acad. Sci. 341: 57–63, 1980.

    Article  CAS  Google Scholar 

  11. Goldman, D. E. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27: 37–60, 1944.

    Article  Google Scholar 

  12. Harris, E. V., and G. P. Burn. The transfer of sodium and potassium ions between muscle and surrounding medium. Trans. Faraday Soc. 45: 508–528, 1949.

    Article  CAS  Google Scholar 

  13. Hodgkin, A. L., and R. D. Keynes. The potassium permeability of a giant nerve fibre. J. Physiol. Lond. 128: 61–88, 1955.

    PubMed  CAS  Google Scholar 

  14. Hoshiko, T., and L. EngbceK. Microelectrode study of the frog skin potential. In: Abstr. Commun. 20th Int. Physiol. Congr. Brussels, 1956,p. 443.

    Google Scholar 

  15. Huf, E. Versuche über den Zusammenhang zwischen Stoffwechsel, Potentialbildung und Funktion der Froschhaut. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 235: 655–673, 1935.

    Article  CAS  Google Scholar 

  16. Ingraham, R. C., H. C. Peters, and M. Visscher. On the movement of materials across living membranes against concentration gradients. J. Phys. Chem. 42: 141–150, 1938.

    Article  CAS  Google Scholar 

  17. Jorgensen, B. C., H. Levi, and H. H. Ussing. On the influence of neurohypophyseal principles on the sodium metabolism in the axolotl (Ambystoma mexicanum). Acta Physiol. Scand. 12: 350–371, 1946.

    Article  CAS  Google Scholar 

  18. Koefoed-Johnsen, V. The effect of G-strophanthin (ouabain) on the active transport of sodium through the isolated frog skin. Acta Physiol. Scand. Suppl.. 145: 87–88, 1957.

    Google Scholar 

  19. Koefoed-Johnsen, V., H. Levi, and H. H. Ussing. The mode of passage of chloride ions through the isolated frog skin. Acta Physiol. Scand. 28: 150–163, 1952.

    Google Scholar 

  20. Koefoed-Johnsen, V., and H. H. Ussing. The contributions of diffusion and flow to the passage of D2O through living membranes. Acta Physiol. Scand. 28: 60–76, 1953.

    Google Scholar 

  21. Koefoed-Johnsen, V., and H. H. Ussing. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.

    Google Scholar 

  22. Koefoed-Johnsen, V., and H. H. Ussing. Transport pathways in frog skin and their modification by copper ions. In: Secretory Mechanisms of Exocrine Glands, edited by N. A. Thorn and O. H. Petersen. Copenhagen: Munksgaard, 1974, p. 411–422.

    Google Scholar 

  23. Kristensen, P. Effect of amiloride on chloride transport across amphibian epithelia. J. Membr. Biol. 40S: 167–185, 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Kristensen, P. Is chloride transfer in frog skin localized to a special cell type? Acta Physiol. Scand. 113: 123–124, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Kristensen, P. Chloride transport in frog skin. In: Chloride Transport in Biological Membranes, edited by J. A. Zadunaisky. New York: Academic, 1982, p. 319–332.

    Chapter  Google Scholar 

  26. Kristensen, P., and E. H. Larsen. Relation between chloride exchange diffusion and a conductive chloride pathway across the isolated skin of the toad (Bufo bufo). Acta Physiol. Scand. 102: 22–34, 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Kristensen, P., and A. Schousboe. The influence of anaerobic condition on sodium transport and adenine nucleotide levels in the isolated skin of the frog Rana temporaria. Biochim. Biophys. Acta 173: 206–212, 1969.

    Article  CAS  Google Scholar 

  28. Kroch, A. Osmotic regulation in the frog (R. esculenta) by active absorption of chloride ions. Scand. Arch. Physiol. 76: 60–74, 1937.

    Article  Google Scholar 

  29. Kroch, A. The active absorption of ions in some fresh water animals. Z. Vgl. Physiol. 25: 335–350, 1938.

    Google Scholar 

  30. Kroch, A. The active and passive exchange of inorganic ions through the surface of living cells and through living membranes generally. Proc. R. Soc. Lond. B Biol. Sci. 131–200, 1946.

    Google Scholar 

  31. Larsen, E. H., and P. Kristensen. Properties of a conductive cellular chloride pathway in the skin of the toad (Bufo bufo). Acta Physiol. Scand. 102: 1–21, 1978.

    Article  CAS  Google Scholar 

  32. Larsen, E. H., and B. E. Rasmussen. A mathematical model of amphibian skin epithelium with two types of transporting cellular units. Pfluegers Arch. 405, Suppl. 1: S50 - S58, 1985.

    Google Scholar 

  33. Larsen, E. H., H. H. Ussing, and K. R. Spring. Volume response of mitochondria-rich cells of toad skin to amiloride and Na-free outside medium. Federation Proc. 45: 746, 1986.

    Google Scholar 

  34. Leaf, A., and A. Renshaw. Ion transport and respiration of isolated frog skin. Biochem. J. 65: 82–90, 1957.

    PubMed  CAS  Google Scholar 

  35. Levi, H., and H. H. Ussing. The exchange of sodium and chloride across the fibre membrane of the isolated frog sartorius. Acta Physiol. Scand. 16: 232–249, 1948.

    Article  CAS  Google Scholar 

  36. LundegÄRdh, H. Anion respiration. Symp. Soc. Exp. Biol. 8: 262–296, 1954.

    Google Scholar 

  37. Macrobbie, E. A. C., and H. H. Ussing. Osmotic behavior of the epithelial cells of frog skin. Acta Physiol. Scand. 53: 348–365, 1961.

    Article  PubMed  CAS  Google Scholar 

  38. Nagel, W. The intracellular electrical potential profile of frog skin epithelium. Pfluegers Arch. 365: 135–143, 1976.

    Article  CAS  Google Scholar 

  39. Nielsen, R. A 3 to 2 coupling of the Na-K pump in frog skin disclosed by the effect of Ba. Acta Physiol. Scand. 107: 189–191, 1979.

    Article  PubMed  CAS  Google Scholar 

  40. Rick, R., A. Dorge, E. Von Arnim, and K. Thurau. Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. J. Membr. Biol. 39: 313–331, 1978.

    Article  PubMed  CAS  Google Scholar 

  41. Scheffey, C., and U. Katz. Chloride conductance pathway across toad skin is located to the mitochondria rich cells of the epithelium. Biol. Bull. Woods Hole 167: S528, 1984.

    Google Scholar 

  42. Skou, J. C. The influence of some cations on adenosine-triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23: 394–401, 1957.

    Article  PubMed  CAS  Google Scholar 

  43. Smith, P. G. The low-frequency electrical impedance of the isolated frog skin. Acta Physiol. Scand. 81: 355–366, 1971.

    Article  PubMed  CAS  Google Scholar 

  44. Spring, K. R., and H. H. UssIng. The volume of mitochondria-rich cells of frog skin epithelium. J. Membr. Biol. In press.

    Google Scholar 

  45. Sten-Knudsen, O., and H. H. Ussing. The flux ratio equation under non-stationary conditions. J. Membr. Biol. 63: 233–242, 1981.

    Google Scholar 

  46. Ussing, H. H. Interpretation of the exchange of radiosodium in isolated muscle. Nature Lond. 160: 262, 1947.

    Article  CAS  Google Scholar 

  47. Ussing, H. H. The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol. Scand. 17: 1–37, 1949.

    Article  PubMed  CAS  Google Scholar 

  48. Ussing, H. H. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 19: 43–56, 1949.

    Article  CAS  Google Scholar 

  49. UssIng, H. H. Some aspects of the application of tracers in permeability studies. Adv. Enzymol. 13: 21–65, 1952.

    Google Scholar 

  50. Ussing, H. H. Relationship between osmotic reactions and active sodium transport in the frog skin epithelium. Acta Physiol. Scand. 63: 141–155, 1965.

    Article  PubMed  CAS  Google Scholar 

  51. Ussing, H. H. Interpretation of tracer fluxes. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer-Verlag, 1978, vol. 1, p. 115–140.

    Google Scholar 

  52. Ussing, H. H. Volume regulation of frog skin epithelium. Acta Physiol. Scand. 114: 363–369, 1982.

    Article  PubMed  CAS  Google Scholar 

  53. Ussing, H. H. Volume regulation and basolateral co-transport of sodium potassium and chloride in frog skin epithelium. Pfluegers Arch. 405, Suppl. 1: S2 — S7, 1985.

    Google Scholar 

  54. Ussing, H. H. Epithelial cell volume regulation illustrated by experiments in frog skin. Renal Physiol. 9: 38–46, 1986.

    PubMed  CAS  Google Scholar 

  55. Ussing, H. H., and B. Andersen. The relation between solvent drag and active transport of ions. In: Proc. Int. Congr. Biochem., 3rd, Brussels. New York: Academic, 1955.

    Google Scholar 

  56. Ussing, H. H., K. Eskesen, and J. Lim. The flux-ratio transient as a tool for separating pathways in epithelia. In: Epithelial Ion and Water Transport, edited by A. D. C. Macknight and J. B. Leaser. New York: Raven, 1981, p. 257–264.

    Google Scholar 

  57. Ussing, H. H., and V. Koefoed-Johnsen. Nature of the frog skin potential. In: Abstr. Commun. 20th Int. Physiol. Congr. Brussels, 1956,vol. 2, p. 511.

    Google Scholar 

  58. Ussing, H. H., and E. E. Windhager. Nature of shunt path and active sodium transport path through frog skin epithelium. Acta Physiol. Scand. 61: 484–504, 1964.

    PubMed  CAS  Google Scholar 

  59. Ussing, H. H., and K. Zerahn. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23: 110–127, 1951.

    Article  PubMed  CAS  Google Scholar 

  60. Vote, C. L., and W. Meier. The mitochondria-rich cell of frog skin as hormone-sensitive “shunt path.” J. Membr. Biol. S40: 151-165, 1978.

    Google Scholar 

  61. Zerahn, K. Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta Physiol. Scand. 36: 300–318, 1956.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 American Physiological Society

About this chapter

Cite this chapter

Ussing, H.H. (1989). Epithelial Transport: Frog Skin as a Model System. In: Tosteson, D.C. (eds) Membrane Transport. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7516-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7516-3_14

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7516-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics