Advertisement

Membrane Transport in Excitation-Contraction Coupling

  • Richard J. Podolsky
Part of the People and Ideas book series (PEOPL)

Abstract

Excitation-contraction coupling is the sequence of largely membrane-dominated processes that follow depolarization of the outer membrane of a muscle cell and leads to activation of the contractile mechanism. The major steps in the sequence are listed in Figure 1. The definition of these events came about through the interaction of many investigators following many different lines of research [see reviews by Ebashi and Endo (6), Weber and Murray (36), Peachey and Franzini-Armstrong (27), Baylor (2), and Martonosi and Beeler (25)]. Several contributions to this story have come out of my laboratory, and this chapter describes how they came about.

Keywords

Sarcoplasmic Reticulum Bathing Solution Contractile Response Intact Fiber Transverse Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Armstrong, C. M., F. Bezanilla, and P. Hoxowlcz. Twitches in the presence of ethylene glycol bis (beta-aminoethylether)-N,N’-tetraacetic acid. Biochim. Biophys. Acta 267: 605–608, 1972.PubMedCrossRefGoogle Scholar
  2. 2.
    Baylor, S. M. Optical studies of excitation-contraction coupling using voltage-sensitive and calcium-sensitive probes. In: Handbook of Physiology. Skeletal Muscle, edited by L. D. Peachey. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 10, p. 355–379.Google Scholar
  3. 3.
    Costantin, L. L., C. Franzini-Armstrong, and R. J. Podolsky. Localization of calcium-accumulating structures in striated muscle fibers. Science Wash. DC 147: 158–160, 1965.Google Scholar
  4. 4.
    Costantin, L. L., and R. J. Podolsky. Depolarization of the internal membrane system in the activation of frog skeletal muscle. J. Gen. Physiol. 50: 1101–1124, 1967.PubMedCrossRefGoogle Scholar
  5. 5.
    Davson, H. The influence of the lyotropic series of anions on cation permeability. Biochem. J. 34: 917–925, 1940.PubMedGoogle Scholar
  6. 6.
    Ebasbi, S., and M. Endo. Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18: 123–183, 1968.CrossRefGoogle Scholar
  7. 7.
    Endo, M., M. Tanaka, and Y. OgawA.Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature Lond. 228: 34–36, 1970.Google Scholar
  8. 8.
    Ford, L. E., and R. J. Podolsky. Regenerative calcium release within muscle cells. Science Wash. DC 167: 58–59, 1970.CrossRefGoogle Scholar
  9. 9.
    Ford, L. E., and R. J. Podolsky. Calcium uptake and force development by skinned muscle fibres in Egta buffered solutions. J. Physiol. Lond. 223: 1–19, 1972.PubMedGoogle Scholar
  10. 10.
    Ford, L. E., and R. J. Podolsky. Intracellular calcium movements in skinned muscle fibres. J. Physiol. Lond. 223: 21–33, 1972.PubMedGoogle Scholar
  11. 11.
    Heilbrunn, L. V. An Outline of General Physiology ( 2nd ed. ). Philadelphia, PA: Saunders, 1943.Google Scholar
  12. 12.
    Hellam, D. C., and R. J. Podolsky. Force measurements in skinned muscle fibers. J. Physiol. Lond. 200: 807–819, 1969.PubMedGoogle Scholar
  13. 13.
    Hill, A. V. On the time required for diffusion and its relation to processes in muscle. Proc. R. Soc. Lond. B Biol. Sci. 135: 446–453, 1948.CrossRefGoogle Scholar
  14. 14.
    Hill, A. V. The abrupt transition from rest to activity in muscle. Proc. R. Soc. Lond. B Biol. Sci. 136: 399–420, 1949.PubMedCrossRefGoogle Scholar
  15. 15.
    Hill, A. V., and L. Macpherson. The effect of nitrate, iodide, and bromide on the duration of the active state in muscle. Proc. R. Soc. Lond. B Biol. Sci. 143: 81–102, 1954.PubMedCrossRefGoogle Scholar
  16. 16.
    Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7: 255–318, 1957.PubMedGoogle Scholar
  17. 17.
    Huxley, A. F., and R. Niedergerke. Interference microscopy of living muscle fibres. Nature Lond. 173: 971–973, 1954.PubMedCrossRefGoogle Scholar
  18. 18.
    Huxley, A. F., and R. W. Straub. Local activation and interfibrillar structures in striated muscle. J. Physiol. Lond. 143: 40–41P, 1958.Google Scholar
  19. 19.
    Huxley, A. F., and R. E. Taylor. Local activation of striated muscle fibres. J. Physiol. Lond. 144: 426–441, 1958.PubMedGoogle Scholar
  20. 20.
    Huxley, H. E. The double array of filaments in cross-striated muscle. J. Biophys. Biochem. Cytol. 3: 631–648, 1957.CrossRefGoogle Scholar
  21. 21.
    Huxley, H. E. Evidence of continuity between the central element of the triads and extracellular spaces in frog sartorius muscle. Nature Lond. 202: 1067–1071, 1964.PubMedCrossRefGoogle Scholar
  22. 22.
    Huxley, H. E., and J. Hanson. Changes in the cross-striation of muscle during contraction and stretch and their structural interpretation. Nature Lond. 173: 973–976, 1954.PubMedCrossRefGoogle Scholar
  23. 23.
    Joss’s, F. F., and M. J. O’Connor. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25: 246–252, 1966.CrossRefGoogle Scholar
  24. 24.
    Kahn, A. J., and A. Sandow. The potentiation of muscular contraction by the nitrate-ion. Science Wash. DC 112: 647–649, 1950.CrossRefGoogle Scholar
  25. 25.
    Martonosi, A. N., and T. J. Beeler. Mechanism of Cat+ transport by sarcoplasmic reticulum. In: Handbook of Physiology. Skeletal Muscle, edited by L. D. Peachey. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 10, p. 417–485.Google Scholar
  26. 26.
    Natori, R. The property and contraction process of isolated myofibrils. Jikeikai Med. J. 1: 119–126, 1954.Google Scholar
  27. 27.
    Peachey, L. D., and C. Franzini-Armstrong. Structure and function of membrane systems of skeletal muscle cells. In: Handbook of Physiology. Skeletal Muscle, edited by L. D. Peachey. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 10, p. 23–71.Google Scholar
  28. 28.
    Podolsky, R. J. A mechanism for the effect of hydrostatic pressure on biological systems. J. Physiol. Lond. 132: 38–39P, 1956.PubMedGoogle Scholar
  29. 29.
    Podolsky, R. J., and L. L. Costantin. Regulation by calcium of the contraction and relaxation of muscle fibers. Federation Proc. 23: 933939, 1964.Google Scholar
  30. 30.
    Podolsky, R. J., and C. E. Hubert. Activation of the contractile mechanism in isolated myofibrils (Abstract). Federation Proc. 20: 301, 1961.Google Scholar
  31. 31.
    Podolsky, R. J., and M. F. Morales. The enthalpy change in adenosine triphosphate hydrolysis II. J. Biol. Chem. 218: 945–959, 1956.PubMedGoogle Scholar
  32. 32.
    Smith, P. D., G. W. Liesegang, R. L. Berger, G. Czerlinski, and R. J. Podolsky. A stopped-flow investigation of calcium ion binding by ethylene glycol bis (ß-aminoethyl ether)-N,N’-tetraacetic acid. Anal. Biochem. 143: 188–195, 1984.PubMedCrossRefGoogle Scholar
  33. 33.
    Stephenson, E. W., and R. J. Podolsky. Regulation by magnesium of intracellular calcium movement in skinned muscle fibers. J. Gen. Physiol. 69: 1–16, 1977.PubMedCrossRefGoogle Scholar
  34. 34.
    Stephenson, E. W., and R. J. Podolsky. Influence of magnesium on chloride-induced calcium release in skinned muscle fibers. J. Gen. Physiol. 69: 17–35, 1977.PubMedCrossRefGoogle Scholar
  35. 35.
    Weber, A., and R. Herz. The binding of calcium to actomyosin systems in relation to their biological activity. J. Biol. Chem. 238: 599–605, 1963.PubMedGoogle Scholar
  36. 36.
    Weber, A., and J. M. Murray. Molecular control mechanisms in muscle contraction. Physiol. Rev. 53: 612–673, 1973.PubMedGoogle Scholar

Copyright information

© American Physiological Society 1989

Authors and Affiliations

  • Richard J. Podolsky

There are no affiliations available

Personalised recommendations