Skip to main content

Structure of F0F1ATPases Determined by Direct and Indirect Methods

  • Chapter
Membrane Protein Structure

Part of the book series: Methods in Physiology Series ((METHPHYS))

  • 268 Accesses

Abstract

ATP synthesis—the phosphorylation of ADP by inorganic phosphate (P;) in mitochondria, chloroplast, and bacteria—is a very important and complex biochemical pathway. The reaction involves the utilization of the proton electrochemical gradient, produced by either the oxidation of substrates or the utilization of light quanta, for the generation of ATP levels up to 108 times the concentration expected from the hydrolytic equilibrium (ATP + H2O = ADP + P i ). The reaction in which the dissipation of the H+ gradient is coupled to the phosphorylation of ADP is carried out by a large, complex enzyme system: the ATP synthase. The membranes of bacteria, chloroplasts, and mitochondria contain ATP synthases that utilize H+ gradients generated across their membranes for the formation of as much as 98% of the ATP required by living organisms. All the ATP synthases are composed of two main sectors: the integral membrane portion Fo and the membrane associated portion F1 (see reviews by Futai and Kanazawa, 1983; Futai et al., 1989; Senior, 1990; Kagawa, 1984). Both Fo and F1 are multisubunit proteins. (At least thirteen subunits have been identified in mammalian ATP synthases (Hatefi, 1985; Godinot & Di Pietro, 1986; Walker et al., 1987), while only eight subunits exist in bacteria (Filligame, 1981; Schneider and Altendorf, 1987). It has been demonstrated that Fo forms a transmembrane H+ channel that directs H+ ions to the F1 sector where their translocation is coupled to the synthesis of ATP. The F1 sector contains all the catalytic and noncatalytic nucleotide-binding sites. ATP synthases have been the subject of extensive structural studies that utilized direct and indirect methods aimed at providing three-dimensional structural information about the enzyme. The most relevant and recent studies will be discussed in this chapter; no attempt is made to make this a comprehensive review of all the ATP synthase literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amzel L. M., and Pedersen P. L. (1978) Adenosine triphosphate from rat liver mitochondria. Crystallization and x-ray diffraction studies of F,-component of enzyme. J Biol. Chem. 253 (7): 2067–2069.

    PubMed  CAS  Google Scholar 

  • Bianchet M., Ysern X., Hullihen J., Pedersen P. L., and Amzel L. M. (1991) Mitochondrial ATP synthase: Quaternary structure of F1 moiety at 3.6 A determined by x-ray diffraction analysis. J. Biol. Chem. 266: 21197–21201.

    PubMed  CAS  Google Scholar 

  • Boekema E. J., Berden J. A., and Gräber P. (1988) Structure of ATPsynthase from chloroplasts studied by electron microscopy and image processing. Biochim. Biophys. Ada 933: 365–373.

    Article  CAS  Google Scholar 

  • Boekema E. J., Berden J. A., and Van Heel G. M. (198) Structure of mitochondrial F,-ATPase studied by electron microscopy and image processing. Biochim. Biophys. Acta 851: 353–360.

    Google Scholar 

  • Bouty M., Briquet M., and Goffeau A. (1983) The a subunit of plant mitochondrial F1-ATPase is translated in mitochondria. J. Biol. Chem. 258: 8524–8526.

    Google Scholar 

  • Bullough D. A., and Allison W. S. (1986) Three copies of Ăź subunit must be modified to achieve complete inactivation of bovine mitochondrial F1-ATPase by 5’-p-fluorsulfonylbenzoyladenosine. J. Biol. Chem. 261 (13): 5722–5730, 1986.

    PubMed  CAS  Google Scholar 

  • Bullough D. A., Brown E. L., Saario J. D., and Allison W. S. (1988) On the location and function of the noncatalytic sites on the bovine heart mitochondrial F1ATPase. J. Biol. Chem. 263 (28): 14053–14060.

    PubMed  CAS  Google Scholar 

  • Cain B. D. and Simoni R. D. (1989) Proton translocation by A the F1FoATPase of Escherichia coli. Muta-genic analysis of the a subunit. J. Biol. Chem. 264 (6): 3292–3300.

    PubMed  CAS  Google Scholar 

  • Catterall W. A., and Pedersen P. L. (1974) Structural and catalytic properties of mitochondrial adenosine triphosphatase. Biochem Soc. Spec. Publ. 4: 63–88.

    CAS  Google Scholar 

  • Cross R. L., and Nalin C. M. (1982) Adenosine nucleotide binding sites of beef heart F1ATPase, evidence for three exchageable sites that are distinct from three noncatalytic sites. J. Biol. Chem. 257: 2874–2881.

    PubMed  CAS  Google Scholar 

  • Duncan T. M., Parsonage D., and Senior A. E. (1986) Structure of the nucleotide-binding domain in the Ăź-subunit of Escherichia coli Fi-ATPase. FEBS Lett. 208: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Dunn S. D., and Futai M. (1980) Reconstitution of functional coupling factor from isolated subunits of Escherichia coli F1-ATPase. J. Biol. Chem. 255: 113–118.

    PubMed  CAS  Google Scholar 

  • Eya S., Noumi T., Maeda M., and Futai M. (1988) Intrinsic membrane sector (Fo) of H+ ATPase (FIFO) from Escherichia coli. J. Biol. Chem. 263 (21): 10056–10062.

    CAS  Google Scholar 

  • Filligame R. H. (1981) Biochemistry and genetics of bacterial H+-translocating ATPases. Curr. Top. Bioenerg. 11: 35–106.

    Google Scholar 

  • Fry D. C., Kuby S. A., and Mildvan A. S. (1986) ATP binding site of adenylate kinase: Mechanistic implications of its homology with ras encoded p21, F1-ATPase, and other nucleotide binding proteins. Proc. Natl. Acad. Sci. USA 83: 907–911.

    Article  PubMed  CAS  Google Scholar 

  • Futai M. (1977) Reconstitution of ATPase activity from isolated a, Ăź, and y subunits of the coupling factor F1 of Escherichia coli. Biochem. Biophys. Res. Commun. 79: 1231–1237.

    Article  CAS  Google Scholar 

  • Futai M., and Kanazawa H. (1983) Structure and function of proton-translocating adenosine triphosphatase (F0F1): Biochemical and molecular biological approaches. Microbiol. Rev. 47: 285–312.

    PubMed  CAS  Google Scholar 

  • Futai M., Noumi T., and Maeda M. (1989) ATP synthase (H+-ATPase): Results by combined biochemical and molecular biological approaches. Annu. Rev. Biochem. 58: 111–136.

    Article  PubMed  CAS  Google Scholar 

  • Garboczi D. N., Fox A. H., Gerring S. L., Thomas P. J., and Pedersen P. L. (1988) Ăź Subunit of rat liver mitochondrial ATP synthase. Biochemistry 27: 553–560.

    Article  PubMed  CAS  Google Scholar 

  • Girault G., Berger G., Galmiche J. M., and Andre F. (1988) Characterizations of six nucleotide-binding sites of chloroplast coupling factor and one site on its purified Ăź subunit. J. Biol. Chem. 263: 14690–14695.

    PubMed  CAS  Google Scholar 

  • Godinot C., and Di Pietro A. (1986) Structure and function of the ATPase-ATPsynthase complex of mitochondria as compared to chloroplast and bacteria. Biochimie 68: 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Gogol E. P., Aggeler R., Sagermann M., and Capaldi R. A. (1989) Cryoelectron microscopy of Escherichia coli F1 adenosinetriphosphatase decorated with monoclonal antibodies to individual subunits of the complex. Biochemistry 28: 4717–4724.

    Article  PubMed  CAS  Google Scholar 

  • Gogol E. P., LuckĂ«n T. B., and Capaldi R. A. (1989) Molecular architecture of Escherichia coli F adenosinetriphosphatase. Biochemistry 28: 4709–4716.

    Article  PubMed  CAS  Google Scholar 

  • Gresser M. J., Myer J., and Boyer P. D. (1982) Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. J. Biol. Chem. 257 (20): 12030–12038.

    PubMed  CAS  Google Scholar 

  • Hatefi Y. (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54: 1015–1069.

    Article  CAS  Google Scholar 

  • Hoppe J., and Sebald W. (1984) The proton conducting Fo-part in bacterial ATPsynthases. Biochim. Biophys. Acta 768: 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Horak A., and Packer M. (1985) Coupling factor activity of the purified pea mitochondrial F1-ATPase. Biochim. Biophys. Acta 810: 310–318.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki Y., and Asahi T. (1983) Purification and characterization of soluble form of mitochondrial adenosinetriphosphate from sweet potato. Arch. Biochem. Biophys. 227: 164–173.

    Article  PubMed  CAS  Google Scholar 

  • Kagawa Y. (1984) New Comprehensive Biochemistry, volume 9 of Bionergetics, pages 149–186. Elsevier, Amsterdam, first edition.

    Google Scholar 

  • Kagawa Y., Sone N., Hirata, H., and Okamoto H. (1979) Structure and function of H+-ATPase. J. Bioenerg. Biomembr. 11: 39–78.

    Article  PubMed  CAS  Google Scholar 

  • Kalayar C., Rosing J., and Boyer P. D. (1977) An alternative site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J. Biol. Chem. 252: 2486–2491.

    Google Scholar 

  • Kimura T., Nakamura K., Hattori H., Nelson N., and Asahi T. (1989) Correspondence of minor Subunits of plant mitocondrial F1-ATPase to F1Fo-ATPase subunits of other organisms. J. Biol. Chem. 264: 3183–3186.

    PubMed  CAS  Google Scholar 

  • Kyte J., and Doolite R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.

    Article  PubMed  CAS  Google Scholar 

  • Lee J. H., Garboczi D. N., Thomas P. J., and Pedersen P. L. (1990) Mitochondrial ATP synthase. J. Biol. Chem. 265: 4664–4669.

    PubMed  CAS  Google Scholar 

  • Lewis M. J., Chang J. A., and Simoni R. D. (1990) A topological analysis of subunit a from Escherichia coli F1F0 ATP synthase predicts eight transmembrane segments. J. Biol. Chem. 27 (18): 10541–10550.

    Google Scholar 

  • Lunardi J., Dupuis A., Frobert Y., Grassi J., and Vignais P. V. (1989) Exploration of delta-subunit interactions in beef heart mitochondrial fl-ATPase by monoclonal antibodies. FEBS Lett. 245: 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Lunardi J., Garin J., Issartel J. P., and Vignais P. V. (1987) Mapping of nucleotide-depleted mitochondrial F1-ATPase with 2-azido-ta-32P]adenosine diphosphatase. J. Biol. Chem. 262 (31): 15172–15181.

    PubMed  CAS  Google Scholar 

  • LĂĽnsdorf H., Ehrig K., Friedl P., and Schairer H. U. (1984) Use of monoclonal antibodies in immunoelectron microscopy for determination of subunit stoichiometry in oligomeric enzymes. J. Mol. Biol. 173: 131–136.

    Article  PubMed  Google Scholar 

  • Mabuchi K., Kanazawa H., Kayano T., and Futai M. (1981) Nucleotide sequence of the gene coding for the b subunit of proton-translocating ATPase of Escherichia coli. Biochem. Biophys. Res. Commun. 102: 172–179.

    Article  CAS  Google Scholar 

  • Miwa K., and Yoshida M. (1989) The a3Ăź3 complex, the catalytic core of Fi-ATPase. Proc. Natl. Acad. Sci. USA 86 (17): 6484–6487.

    Article  PubMed  CAS  Google Scholar 

  • Morikami A., Aiso K., Asahi T., and Nakamura K. (1992) The delta’-subunit of higher plant 6-subunit mitochondrial fl-ATPase is homologous to the delta-subunit of animal mitochondrial F1-ATPase. J. Biol. Chem. 267: 72–76.

    PubMed  CAS  Google Scholar 

  • Otha S., Tsuboi M., Oshima T., Yoshida M., and Kagawa Y. (1980) Nucleotide binding to isolated a and Ăź subunits of proton translocating adenosinetriphosphate studied with circular dichroism. J. Biochem. (Tokyo) 87: 1609–1617.

    Google Scholar 

  • Ohta S., Yohda M., Ishizuka M., Hirata H., Hammamoto T., Otawara-Hammamoto Y., Matsuda K., and Kagawa Y. (1988) Site-directed mutagenesis of stable adenosine triphosphate synthase. Biochim. Biophys. Acta 933: 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Parsonage D., Al-Shawi M. K., and Senior A. E. (1988) Directed mutation of strongly conserved lysine 155 in the catalytic nucleotide-binding domain of 0-subunit of F1-ATPase from Escherichia coli. J. Biol. Chem. 263 (10): 4740–4744.

    CAS  Google Scholar 

  • Penefsky H. S., and Grubmeyer C. (1984) H + -ATPase (ATP Synthase): Structure, Function, Biogenesis of the F o F 1 Complex of Coupling Membranes, ICSU Press, Adriatica Editrice, Bari Italy, pp. 195–204.

    Google Scholar 

  • Rao R., Al-Shawi M. K., and Senior A. E. (1988) Trinitrophenyl-ATP and ADP bind to a single nucleotide site on isolated Ăź-subunit of Escherichia coli F1-ATPase. J. Biol. Chem. 263: 5569–5573.

    PubMed  CAS  Google Scholar 

  • Schindler H., and Nelson N. (1982) Proteolipid of adenosinetriphosphate from yeast mitochondria. Forms proton-selective channels in planar lipid bilayers. Biochemistry 21: 5787–5794.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt V. D., and Paradies H. (1977) The structure of the b-subunit from chloroplast coupling factor (CFI) in solution. Biochem. Biophys. Res. Commun. 78: 1043–1052.

    Article  PubMed  CAS  Google Scholar 

  • Schneider E., and Altendorf K. (1987) Bacterial adenosine 5’-triphosphatase synthase (FIFs): Purification and reconstitution of Fo complexes and biochemical and functional characterization of their subunits. Microbiol. Rev. 51: 477–497.

    PubMed  CAS  Google Scholar 

  • Sebald W., Machleidt W., and Wachter E. (1980) N,N’-Dicyclohexylcarbodiimide binds specifically to a single glutamyl residue of proteolipid subunit of mitochondrial adenosinetriphosphatase from Neurospora crassa and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77: 785–789.

    Article  CAS  Google Scholar 

  • Senior A. E. (1990) The proton-translocating ATPase of Escherichia coli. Annu. Rev. Biophys. Chem. 19: 7–41.

    Article  CAS  Google Scholar 

  • Shirakihara Y., Yohda M., Kagawa Y., Yokoyama K., and Yoshida M. (1991) Purification by dye-ligand chromatography and a crystallization study of the F1-ATPase and its major subunits, Ăź and a, from a thermophilic bacterium, PS3. J. Biochem. 109 (3): 466–471.

    PubMed  CAS  Google Scholar 

  • Spitsberg V. L., Pfeiffer N. E., Partridge B., Wylie D. E., and Schuster S. M. (1985) Isolation and antigenic characterization of corn mitochondrial F1-ATPase. Plant Physiol. (Bethesda) 77: 339–345.

    Article  CAS  Google Scholar 

  • Sterweis P. C., and Smith J. B. (1977) Characterization of the purified membrane attachment (6) subunit of proton translocating adenosine triphosphatase from Escherichia coli. Biochemistry 16: 4020–4025.

    Google Scholar 

  • Taylor W. R., and Green N. M. (1989) The predicted secondary structure of nucleotide-binding sites of six cation-transporting ATPases lead to a probable tertiary fold. FEBS Lett. 179: 241–248.

    CAS  Google Scholar 

  • Verbug J. G., and Allison W. S. (1990) Tyrosine a244 is derivatized when the bovine heart mitochondrial F1-ATPase is inactivated with 5’-p-fluorosulfonylbenzoylethenoadenosine. J. Biol. Chem. 265: 8065–8074.

    Google Scholar 

  • Walker J. E., Fearnley I. M., Gay N. J., Gibson B. W., Northop F. D., Powell S. J., Runswick M. J., Saraste M., and Tybulewicz V.L.J. (1985) Primary structure and subunit stoichiometry of F1ATPase from bovine mitochondria. J. Mol. Biol. 184: 677–701.

    Article  PubMed  CAS  Google Scholar 

  • Walker J. E., Fearnley I. M., Lutter R., Todd R. J., and Runswick M. J. (1990) Structural aspects of proton pumping ATPases. Phil. Trans. R. Soc. Lond. B326: 367–378.

    Article  CAS  Google Scholar 

  • Walker J. E., Runswick M. J., and Poulter L. (1987) ATP synthase from bovine mitochondria. J. Mol. Biol. 197: 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Walker J. E., Saraste M., and Gay N. J. (1984) The unc operon: Nucleotide sequence, regulation and structure of ATP synthase. Biochim. Biophys. Acta 768: 164–200.

    Article  PubMed  CAS  Google Scholar 

  • Walker J. E., Saraste M., Runswick J. J., and Gay N. J. (1982) Distantly related sequences in the a-and Ăź-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and the common nucleotide binding fold. EMBO J. 1 (8): 945–981.

    PubMed  CAS  Google Scholar 

  • Wise J. G., Duncan T. M., Cox L. R., and Senior A. E. (1983). Properties of F1-ATPases from the uncD412 mutant of Escherichia coli. Biochem. J. 215: 343–350.

    CAS  Google Scholar 

  • Yoshida M., Okamoto H., Hirata H., and Kagawa Y. (1977) Reconstitution of adenosine triphosphatase of thermophilic bacterium from purified individual subunits. Proc. Natl. Acad. Sci. USA 74: 963–940.

    Article  Google Scholar 

  • Yoshida M., Sone N., Hirata J., and Kagawa Y. (1975) A highly stable adenosine triphosphatase from a thermophilic bacterium. J. Biol. Chem., 250: 7910–7916.

    PubMed  CAS  Google Scholar 

  • Ysern X., Amzel L. M., and Pedersen P. L. (1988) ATP synthases: structure of the F1 moeity and its relationship to function and mechanism. J. Bioener. Biomembr. 20: 423–450.

    Article  CAS  Google Scholar 

  • Xue Z., Zhou J. M., Melese T., Cross R. L., and Boyer P. D. (1987) Chloroplast F1-ATPase has more than three nucleotide binding sites, and 2-azido-ADP or 2-azido-ATP at both catalytic and non-catalytic sites labels the Ăź-subunit. Biochemistry 26: 3749–3753.

    Article  PubMed  CAS  Google Scholar 

  • Lodish, H. F. (1988) Multi-spanning membrane proteins: how accurate are the models? Trends Biochem. Sci. 13: 332–338.

    Article  PubMed  CAS  Google Scholar 

  • Yoder, M. D., Keen, N. T., and Jurnak, F. (1993) New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science 260: 1503–1507.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 American Physiological Society

About this chapter

Cite this chapter

Amzel, L.M., Blanchet, M.A., Pedersen, P.L. (1994). Structure of F0F1ATPases Determined by Direct and Indirect Methods. In: White, S.H. (eds) Membrane Protein Structure. Methods in Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7515-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7515-6_7

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics