Endothelin pp 137-143 | Cite as

Endothelin as a Growth Factor in Vascular Remodeling and Vascular Disease

  • Victor J. Dzau
  • Richard E. Pratt
  • John P. Cooke
Part of the Clinical Physiology Series book series (CLINPHY)


Vascular remodeling is an adaptive process in response to chronic alterations in flow, pressure, and humoral factor(s). This process involves a complex sequence of events, ranging from the sensing and transduction of physical or humoral signals, to the expression of selective genes within the vessel wall, to the process of cellular growth and extracellular matrix production.1 Autocrineparacrine growth factors have been shown to be expressed by vascular endothelial and smooth muscle cells. These substances may play an important role in the remodeling mechanism. A growing body of evidence suggests that the endothelium has the capacity to sense changes in blood flow—shear stress and subsequently to influence vascular smooth muscle contraction by the release of endothelial-derived vasoactive substance(s).2–10 In addition to its role in regulating vascular tone and blood flow, the endothelium may play a role in longterm vascular remodeling related to changes in flow.5 Indeed, the endothelium is capable of producing growth-promoting (e.g., platelet-derived growth factors (PDGF) and basic fibroblast growth factor) and growth-inhibiting (e.g., heparin, prostaglandins, and endothelium-derived relaxing factor) substances.1 The endothelium-derived vasoactive substances can also influence vascular smooth muscle growth. We and others have found that potent vasoconstrictors, such as angiotensin II, induce growth and proliferation of vascular smooth muscle cells.1,11–15 Therefore, when Yanagisawa and colleagues3 isolated the potent peptide vasoconstrictor endothelin from cultured endothelial cells, the question arose as to whether endothelin influenced remodeling of the blood vessel. We describe our investigation of the effect of endothelin on vascular smooth muscle cell growth and examine the potential significance of its mito-genic action in vascular remodeling and disease.


Vascular Smooth Muscle Cell Subarachnoid Hemorrhage Vascular Remodel Cerebral Vasospasm Potent Vasoconstrictor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dzau, V. J., and G. H. Gibbons. Cell biology of vascular hypertrophy in systemic hypertension. Am. J. Cardiol. 62: 30G - 35G, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    Furchgott, R. F. Role of endothelium in responses of vascular smooth muscle. Circ. Res. 53: 557–573, 1987.CrossRefGoogle Scholar
  3. 3.
    Yanagisawa, M., H. Kurihara, S. Kimura, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.PubMedCrossRefGoogle Scholar
  4. 4.
    Cooke, J. P., E. Rossitch JR., N. Andon, J. Loscalzo, and V. J. Dzau. Flow activates a specific endothelial potassium channel to release an endogenous nitrovasodilator. J. Am. Coll. Cardiol. 15: 1A, 1990.Google Scholar
  5. 5.
    Frangos, J. A., S. G. Eskin, L. V. Mcintire, and C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227: 1477–1479, 1984.CrossRefGoogle Scholar
  6. 6.
    Pohl, V., J. Holtz, R. Busse, and E. Bassenge. Crucial role of the endothelium in the vasodilator response to increased flow in vivo. Hypertension 8: 37–44, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Oleson, S. P., D. E. Clapham, and P. F. Davies. Haemodynamic shear stress activates a K’ current in vascular endothelial cells. Nature 331: 168–170, 1988.CrossRefGoogle Scholar
  8. 8.
    Langille, B. L., and F. O’donnell. Reductions in arterial diameter produced by chronic diseases in blood flow are endothelium dependent. Science 231: 405–407, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Rubanyi, G., J. C. Romero, and P. M. Vanhoutte. Flow-induced release of endothelium-derived relaxing factors. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H1145 — H1149, 1986.Google Scholar
  10. 10.
    Rubanyi, G. M. Endothelium-dependent pressure-induced contraction of isolated canine carotid arteries. Am. J. Physiol. 255 (Heart Circ. Physiol. 24 ): H783 — H788, 1988.Google Scholar
  11. 11.
    Geisterfer, A. N., M. J. Peach, and G. K. Owens. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ. Res. 62: 749–757, 1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Naftilan, A. J., R. E. Pratt, and V. J. Dzau. Induction of PDGF A-chain and c-myc-gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J. Clin. Invest. 83: 1419–1424, 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    Blaes, N., and J. P. Boissel. Growth stimulating effects of catecholamines on rat aortic smooth muscle cells in culture. J. Cell. Physiol. 116: 167–172, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Coughlin, S. R., W. M. F. Lee, P. W. Williams, G. M. Giels, and L. T. Williams. C-myc gene expression is stimulated by agents that activate protein kinase C and does not account for the mitogenic effect of PDGF. Cell 43: 243–251, 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Yamori, Y., M. Mano, Y. Nara, and R. Horie. Catecholamine-induced polyploidization in vascular smooth muscle cells. Circulation 1987;75(Suppl. I): I-92-I-95.Google Scholar
  16. 16.
    Dubin D., R. E. Pratt, J. P. Cooke, and V. J. Dzau. Endothelin, a potent vasoconstrictor, is a vascular smooth muscle mitogen. J. Vasc. Med. Biol. 1: 150–154, 1989.Google Scholar
  17. 17.
    Komuro, I., H. Kurihara, T. Sugiyama, F. Takaku, and Y. Yazaki. Endothelin stimulates cfos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett. 238: 249–252, 1988.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakaki, T., M. Nakayana, S. Yamamoto, and R. Kato. Endothelin-mediated stimulation of DNA synthesis in vascular smooth muscle. Biochem. Biophys. Res. Commun. 158: 880–883, 1989.PubMedCrossRefGoogle Scholar
  19. 19.
    Brown, K. D., and C. J. Littlewood. Endothelin stimulates DNA synthesis in Swiss 3T3 cells: synergy with polypeptide growth factors. Biochem. J. 263: 977–980, 1989.PubMedGoogle Scholar
  20. 20.
    Takuwa, M., H. Tsukada, H. Matsuoka, and S. Yagi. Inhibitory effect of endothelin on renin release in vitro. Am. J. Physiol. 257 (Endocrinol. Metab. 20 ): E833 - E838, 1989.Google Scholar
  21. 21.
    Simonson, M. S., S. Wann, P. Men, G. R. Dubyak, M. Kester, Y. Nakazato, J. R. Sedor, and M. J. Dunn. Endothelin stimulates phospholipase C, Na ‘di’ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J. Clin. Invest. 83: 7708–712, 1989.CrossRefGoogle Scholar
  22. 22.
    Marsden, P. A., N. R. Danthuluri, B. M. Brenner, B. J. Ballerman, and T. A. Brock. Endothelin action on vascular smooth muscle involves inositol triphosphate and calcium mobilization. Biochem. Biophys. Res. Commun. 158: 86–93, 1989.PubMedCrossRefGoogle Scholar
  23. 23.
    Modenaar, M. H., R. Y. Tsien, P. T. Vander Saag, and S. W. De Laat. Na-/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 305: 645–648, 1983.Google Scholar
  24. 24.
    Berk, B. C., B. A. Brock, M. A. Gimbrone, and R. W. Alexander. Early agonist-mediated events in cultured vascular smooth muscle cells. J. Biol. Chem. 262: 5065–5072, 1987.PubMedGoogle Scholar
  25. 25.
    Miller, A. D., T. Curran, and F. M. Verma. C-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36: 51–60, 1984.PubMedCrossRefGoogle Scholar
  26. 26.
    Rozengurt, E. Early signals in the mitogenic response. Science 234: 161–166, 1986.PubMedCrossRefGoogle Scholar
  27. 27.
    Marx, J. L. The fos gene as “master switch.” Science 237: 854–856, 1987.PubMedCrossRefGoogle Scholar
  28. 28.
    Gibbons, G. H., R. E. Pratt, and V. J. Dzau. Vascular myocyte hypertrophy vs hyperplasia: autocrine transforming growth factor-beta determines response to angiotensin II. Clin. Res. 287A, 1990.Google Scholar
  29. 29.
    Ross, R. The pathogenesis of atherosclerosis-An update. N. Engl. J. Med. 314: 488–514, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Ludmer, P. L., A. P. Selwyn, T. L. Shook, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N. Engl. J. Med. 315: 1046–1051, 1986.PubMedCrossRefGoogle Scholar
  31. 31.
    Henry, P. D., and M. Yokoyama. Supersensitivity of atherosclerotic rabbit aorta to ergonovine: mediation by a serotonergic mechanism. J. Clin. Invest. 66: 306–313, 1980.PubMedCrossRefGoogle Scholar
  32. 32.
    Heistad, D. D., M. L. I. Armstrong, M. L. Marcus, D. J. Piegors, and A. L. Mark. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ. Res. 54: 711–718, 1984.PubMedCrossRefGoogle Scholar
  33. 33.
    Rossitch, E. JR., E. Alexander III, and J. P. Coo. L-arginine normalizes endothelial function in hypercholesterolemic basilar arteries. FASEB J. 4: A416, 1990.Google Scholar
  34. 34.
    Campbell-Boswell, M., and A. L. Robertson. Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp. Mol. Pathol. 35: 265–276, 1981.PubMedCrossRefGoogle Scholar
  35. 35.
    Dzau, V. J., J. P. Cooke, and G. M. Rubanyi. Significance of endothelial derived vasoactive substances. J. Vasc. Med. Biol. 1: 43–45, 1989.Google Scholar
  36. 36.
    Cooke, J. P., and V. J. Dzau. Possible role for endothelin in vascular disease: an alternative hypothesis. J. Vasc. Med. Biol. 1: 316–318, 1989.Google Scholar
  37. 37.
    Saito, Y., K, Nakao, T. Yamada, et al. Plasma endothelin-1-like immunoreactivity level in healthy subjects and patients with hypertension. Hypertension 14: 335, 1989.Google Scholar
  38. 38.
    Kim, P., T. M. Sundt, and P. M. Vanhoutte. Alterations in endothelium-dependent responsiveness of the canine basilar artery after subarachnoid hemorrhage. J. Neurosurg. 69: 239–246, 1988.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakagomi, T., N. F. Kassell, R. M. Lehman, J. A. Jane, T. Sasaki, T. Takakura. Endothelial damage and cerebral vasospasm. In: Cerebral Vasospasm, edited by R. H. Wilkinson. New York: Raven, 1988, p. 137–143.Google Scholar
  40. 40.
    Mayberg, M. R., T. M. Liszcak, P. M. Black, and N. T. Zervas. Acute structural changes in feline cerebral arteries after subarachnoid hemorrhage. In: Cerebral Vasospasm, edited by R. H. Wilkinson. New York: Raven, 1988, p. 231–246.Google Scholar
  41. 41.
    Smith, R. R., B. R. Clower, Y. Honma, and J. M. Cruse. The constrictive angiopathy of subarachnoid hemorrhage: an immunopathological approach. In: Cerebral Vasospasm, edited by R. H. Wilkinson. New York: Raven, 1988, p. 247–252.Google Scholar
  42. 42.
    Liszcak, T. M., B. G. Vassos, P. M. Black, et al. Cerebral arterial constriction after experimental subarachnoid hemorrhage is associated with blood components within the arterial wall. J. Neurosurg. 58: 18–26, 1983.CrossRefGoogle Scholar
  43. 43.
    Fraser, R. A., B. M. Stein, R. E. Barrett, and J. L. Pool,. Noradrenergic mediation of experimental cerebrovascular spasm. Stroke 1: 356–362, 1970.PubMedCrossRefGoogle Scholar
  44. 44.
    Fraser, R. A., J. M. Stein, W. J. Flor, S. L. Cohan, and J. Parkhurst. Sequential changes of vascular ultrastructure in experimental cerebral vasospasm: myonecrosis of subarachnoid arteries. J. Neurosurg. 41: 49–57, 1974.CrossRefGoogle Scholar
  45. 45.
    Demey, J. G., and P. M. Vanhoutte. Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol. 335: 65–74, 1983.Google Scholar
  46. 46.
    Rubanyi, G. M., and P. M. Vanhoutte. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J. Physiol. 364: 45–56, 1985.PubMedGoogle Scholar
  47. 47.
    Maw, I., I. Ikeaki, Y. Suzuki, S. Satoh, and M. Shibuya. Endothelin and the production of cerebral vasospasm in dogs. Biochem. Biophys. Res. Commun. 31: 345–3551, 1989.Google Scholar
  48. 48.
    Chester, A. H., M. R. Dashwood, J. G. Clarke, et al. Influence of endothelin on human coronary arteries and localization of its binding sites. Am. J. Cardiol. 63: 1395–1398, 1989.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 1992

Authors and Affiliations

  • Victor J. Dzau
  • Richard E. Pratt
  • John P. Cooke

There are no affiliations available

Personalised recommendations