Imaging Living Cells and Mapping Their Surface Molecules with the Atomic Force Microscope

  • Muhammed Gad
  • Atsushi Ikai
Part of the Methods in Physiology book series (METHPHYS)


In 1986 Gerd Binnig and Heinrich Roher shared the Nobel Prize in Physics for inventing the scanning tunneling microscope (STM) and discovering that it can image individual atoms with unprecedented resolution (Binnig et al., 1982). This novel type of microscopy is based on the quantum phenomenon that electrons can tunnel through a narrow insulating gap between two conductors.


Atomic Force Microscope Liquid Cell Color Figure Surface Force Apparatus Agar Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, T. R., and C. F. Quate. Atomic resolution with the atomic force microscope on conductors and nonconductors. J. Vac. Sci. Technol. A 6: 271–274, 1988.CrossRefGoogle Scholar
  2. Ashkin, A., J. M. Dziedzic, and T. Yamane. Optical trapping and manipulation of single cells using infrared laser beam. Nature 330: 769–771, 1987.PubMedCrossRefGoogle Scholar
  3. Bezanilla, M., C. J. Bustamante, and H. G. Hansma. Improved visualization of DNA in aqueous buffer with the atomic force microscope. Scanning Microsc. 7 (4): 1145–1148, 1993.Google Scholar
  4. Binnig, G., C. F. Quate, and C. H. Gerber. Atomic force microscopy. Phys. Rev. Lett. 56: 930–933, 1986.PubMedCrossRefGoogle Scholar
  5. Butt, H. J., E. K. Wolff, S. A. C. Gould, B. Dixon Northern, C. M. Peterson, and P. K. Hansma. Imaging cells with the atomic force microscope. J. Struct. Biol. 105: 54–61, 1990.PubMedCrossRefGoogle Scholar
  6. Cooper, S. Bacterial Growth and Division. San Diego: Academic Press, 1991, p. 359.Google Scholar
  7. Dammer, U., O. Popescu, P. Wagner, D. Anselmetti, H. J. Güntherodt, and G. Misevic. Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267: 1173–1175, 1995.PubMedCrossRefGoogle Scholar
  8. Dammer, U., M. Hegner, D. Anselmetti, R Wagner, M. Dreier, W. Huber, and H. J. Güntherodt. Specific antigen/antibody interaction measured by force microscopy. Biophys. J. 70: 2437–2441, 1996.PubMedCrossRefGoogle Scholar
  9. Drake, B., C. B. Prater, A. L. Weisenhorn, S. A. C. Gould, T. R. Albrecht, C. E Quate, D. S. Cannell, H. G. Hansma, and P. K. Hansma. Imaging crystals, polymers and processes in water with the atomic force microscope. Science 243: 1586–1989, 1989.PubMedCrossRefGoogle Scholar
  10. Evans, E., D. Berk, and A. Leung. Detachment of agglutinin-bonded red blood cells. Forces to rupture molecular point attachment. Biophys. J. 59: 838–848, 1991.PubMedCrossRefGoogle Scholar
  11. Farkas, V., J. Kovarfk, A. Kosinovâ, and S. Bauer. Autoradiographic study of mannan incorporation into the growing cell walls of Saccharomyces cerevisiae J. Bacteriol. 117: 265–269, 1974.Google Scholar
  12. Ferrell, T. L., J. P. Goundonnet, R. C. Reddick, S. L. Sharp, and R. J. Warmack. The photon scanning tunneling microscopy. J. Vac. Sci. Technol. B9: 525–530, 1991.CrossRefGoogle Scholar
  13. Florin, E. L., V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligand receptor pairs. Science 264: 415–417, 1994.PubMedCrossRefGoogle Scholar
  14. Gad, M., and A. Ikai. Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophys. J. 69: 2226–2233, 1995.PubMedCrossRefGoogle Scholar
  15. Gad, M., A. Itoh, A. Ikai. Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol. Inter. 21 (11): 697–706, 1997.CrossRefGoogle Scholar
  16. Häberle, W., J. K. H. Hörber, F. Ohnesorge, D. P. E. Smith, and G. Binnig. In situ investigation of single living cell infected by viruses. Ultramicroscopy 42–44:1161–1167, 1992.Google Scholar
  17. Hansma, H. G., M. Benzallina, F. Zenhausern, M. Adrian, and R. L. Sinsheimer. Atomic force microscopy of DNA in aqueous solutions. Nucleic Acids Res. 21 (3): 505–512, 1993.PubMedCrossRefGoogle Scholar
  18. Hansma, P K., B. Drake, O. Marti, S. A. Goul, and C. B. Prater. The scanning ion-conduc-tance microscope. Science 243: 641–643, 1989.PubMedCrossRefGoogle Scholar
  19. Hansma, H., J. Vesenka, C. Siegerist, G. Kelderman, H. Morret, R. L. Sinsheimer, V. Elings, C. Bustamante, and R K. Hansma. Reproducible imaging and dissection of plasmid DNA under liquids with atomic force microscope. Science 256: 1180–1184, 1992.PubMedCrossRefGoogle Scholar
  20. Hegner, M., R. Wagner, and G. Semenza. Immobilizing DNA on gold via thiol modification for atomic force microscopy in buffer solution. FEBS 336: 452–456, 1993.CrossRefGoogle Scholar
  21. Helm, C., W. Knoll, and J. Israelachivili. Measurement of ligand-receptor interactions. Proc. Nat. Aca. Sci. 88: 8169–8173, 1991.CrossRefGoogle Scholar
  22. Henderson, E. Imaging of living cells by atomic-force microscopy. Prog. Surf. Sci. 46: 39–60, 1994.CrossRefGoogle Scholar
  23. Hinterdorfer R, W. Baumgartner, H. J. Gruber, K. Schilcher, H. Schindler. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. U.S.A. 93: 3477–3481, 1996.PubMedCrossRefGoogle Scholar
  24. Hörber, J. K. H., W. Häberle, F. Ohnesorge, G. Binnig, H. G. Liebich, C. P. Czerny, H. Mahnel, and A. Mayr. Investigation of living cells in the nanometer regime with the scanning force microscope. Scanning Microsc. 6: 919–930, 1992.PubMedGoogle Scholar
  25. Horisberger, M., and M. Vonlanthen. Location of mannan and chitin on thin sections of budding yeasts with gold markers. Arch. Microbiol. 115: 1–7, 1977.PubMedCrossRefGoogle Scholar
  26. Israelachvili, J. N. Intermolecular and Surface Forces. London: Academic Press, 1992.Google Scholar
  27. Kasas, S., and A. Ikai. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys. J. 68: 1678–1680, 1995.PubMedCrossRefGoogle Scholar
  28. Kuo, S. C., and M. P. Sheetz. Force of single kinesin molecules measured with optical tweezers. Science 260: 232–234, 1993.PubMedCrossRefGoogle Scholar
  29. Laney D. E., R. A. Garcia, S. M. Parsons, and H. G. Hansma. Changes in the elastic properties of cholinergic synaptic vesicles as measured by atomic force microscopy. Biophys. J. 72: 806–813, 1997.PubMedCrossRefGoogle Scholar
  30. Martin, H., R Wagner, and G. Semenza. Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett. 336: 452–456, 1993.CrossRefGoogle Scholar
  31. Martin, Y, and H. K. Wickramasinghe. Magnetic imaging by “force microscopy” with 1000 A resolution. Appl. Phys. Lett. 50: 1455–1458, 1987.CrossRefGoogle Scholar
  32. Mitsuda, S., T. Nakagawa, H. Nakazato, and A. Ikai. Receptor-linked antigen delivery system. Importance of 2-macroglobulin in the development of peptide vaccine. Biochem. Biophys. Res. Commun. 216: 339–405, 1995.CrossRefGoogle Scholar
  33. Neagu, C., K. O. Van Der Werf, C. A. J. Putman, Y. M. Kraan, B. G. De Grooth, N. F. Van Hulst, and J. Greve. Analysis of immunolabeled cells by atomic force microscopy, optical microscopy, and flow cytometry. J. Struct. Biol. 112: 32–40, 1994.PubMedCrossRefGoogle Scholar
  34. Putman, C. A. J., K. O. van der Werf, B. G. deGrooth, N. F. van Hulst, J. Greve, and P. K. Hansma. A new imaging mode in atomic force microscopy based on the error signal. Proc. SPIE 1639: 198–204, 1992.CrossRefGoogle Scholar
  35. Radmacher, M., J. P. Cleveland, M. Frtiz, H. G. Hansma, and R. K. Hansma. Mapping interaction forces with the atomic force microscope. Biophys. J. 66: 2159–2165, 1994.PubMedCrossRefGoogle Scholar
  36. Shroff, S. G., D. R. Saner, and R. Lal. Atomic force microscopy of arterial cells: Local viscoelastic mechanical-properties and imaging of cytoskeleton. Biophys. J. 66: 278a, 1994.Google Scholar
  37. Svoboda, K., C. F. Schmidt, B. J. Schnapp, and S. M. Block. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365: 721–727, 1993.PubMedCrossRefGoogle Scholar
  38. Thundat, T., D. P. Allison, R. J. Warmack, G. M. Brown, K. B. Jacobson, J. J. Schrick, and T. L. Ferrel. Atomic force microscopy of DNA on mica and chemically modified mica. Scanning Microsc. 6: 911–918, 1992.PubMedGoogle Scholar
  39. Williams, C. C., and H. K. Wickramasinghe. Scanning thermal profiler. Appl. Phys. Lett. 49: 1587–1589, 1986.CrossRefGoogle Scholar
  40. Yang, J., J. Mou, and Z. Shao. Molecular resolution atomic force microscopy of soluble proteins in solution. Biochim Biophys. Acta 1199: 105–114, 1994.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 2001

Authors and Affiliations

  • Muhammed Gad
  • Atsushi Ikai

There are no affiliations available

Personalised recommendations