Frequency-Domain Fluorescence Lifetime Imaging Microscopy: A Window on the Biochemical Landscape of the Cell

  • Peter J. Verveer
  • Anthony Squire
  • Philippe I. H. Bastiaens
Part of the Methods in Physiology book series (METHPHYS)


Fluorescence microscopy is an established technique for determining the localization and properties of molecules in biological specimens. Obvious advantages of fluorescence are sensitivity, specificity, and spectral characteristics that depend on the environment of the probe. In addition, the low energy content of fluorescence photons in the visible part of the spectrum permits nondestructive measurements in living cells. Imaging the spatial distribution of a molecule using its fluorescence intensity has been complemented with (micro) spectroscopic techniques for studying the physical and chemical properties of the molecular environment of the fluorophore, which allow the observation of biochemical activity in cells. This has typically been achieved by exploiting the steady-state spectral characteristics of fluorescent probes that change their emission energy upon reaction with the environment. With such techniques, an image that is related to the physiological parameter of interest can be calculated from the ratio of intensities obtained at two excitation or emission wavelengths, eliminating the concentration and light path dependence of the fluorescence intensity. To quantify these images, the ratio as a function of the physiological parameter of interest has to be calibrated separately.


Fluorescence Lifetime Image Intensifier Decay Kinetic Fluorescence Lifetime Image Microscopy Homodyne Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcala, J. R., E. Gratton, and D. M. Jameson. A multifrequency phase fluorometer using the harmonic content of a mode-locked laser. Anal. Instrum. 14: 225–250, 1985.CrossRefGoogle Scholar
  2. Bastiaens, P. I. H., and T. M. Jovin. Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: Fluorescent labeled protein kinase C bI. Proc. Natl. Acad. Sci. U.S.A. 93: 8407–8412, 1996.PubMedCrossRefGoogle Scholar
  3. Bastiaens, P. I. H. and A. Squire. Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9: 48–52, 1999.PubMedCrossRefGoogle Scholar
  4. Beechem, J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 210: 37–54, 1992.PubMedCrossRefGoogle Scholar
  5. Carlsson, K., and A. Liljeborg. Confocal fluorescence microscopy using spectral and lifetime information to simultaneously record four fluorophores with high channel separation. J. Microsc. 185: 37–46, 1997.CrossRefGoogle Scholar
  6. Clegg, R. M. Fluorescence resonance energy transfer spectroscopy and microscopy. In: Fluorescence Imaging Spectroscopy and Microscopy, edited by X. F. Wang and B. Herman. New York: Wiley, 1996, pp. 179–251.Google Scholar
  7. Clegg, R. M., and P. C. Schneider. Fluorescence lifetime resolved imaging microscopy: A general description of lifetime-resolved imaging measurements. In: Fluorescence Microscopy and Fluorescence Probes, edited by J. Slavik. New York: Plenum Press, 1996, pp. 15–33.Google Scholar
  8. Draaijer, A., R. Sanders, and H. C. Gerritsen. Fluorescence lifetime imaging, a new tool in confocal microscopy. In: Handbook of Biological Confocal Microscopy, edited by J. B. Pawley. New York: Plenum Press, 1995, pp. 491–505.CrossRefGoogle Scholar
  9. French, T., P. T. C. So, D. J. Weaver, T. Coelho-Sampaio, E. Gratton, E. W. Voss, and J. Carrero. Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing. J. Microsc. 185: 339–353, 1997.PubMedCrossRefGoogle Scholar
  10. Gadella, T. W. J., Jr., R. M. Clegg, and T. M. Jovin. Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase modulation data. Bioimaging 2: 139–159, 1994.CrossRefGoogle Scholar
  11. Gadella, T. W. J., Jr., and T. M. Jovin. Oligomerization of epidermal growth-factor receptors on A431 cells studied by time resolved fluorescence imaging microscopy—A stereo-chemical model for tyrosine kinase receptor activation. J. Cell Biol. 129: 1543–1558, 1995.PubMedCrossRefGoogle Scholar
  12. Gadella, T. W. J., Jr., T. M. Jovin, and R. M. Clegg. Fluorescence lifetime imaging microscopy (FLIM)—Spatial-resolution of microstructures on the nanosecond time-scale. Biophys. Chem. 48: 221–239, 1993.CrossRefGoogle Scholar
  13. Gratton, E., and M. Limkeman. A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys. J. 44: 315–324, 1983.PubMedCrossRefGoogle Scholar
  14. Gratton, E., M. Limkeman, J. R. Lakowicz, B. P. Maliwa, H. Cherek, and G. Laczko. Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys. J. 4: 479–486, 1984.CrossRefGoogle Scholar
  15. Kume, H., K. Koyama, K. Nakatsugawa, S. Suzuki, and D. Fatlowitz. Ultrafast microchannel plate photomultipliers. Appl. Opt. 27: 1170–1178, 1988.PubMedCrossRefGoogle Scholar
  16. Lakowicz, J. R., and K. Berndt. Lifetime-selective fluorescence imaging using an rf phase sensitive camera. Rev. Sci. Instrum. 62: 1727–1734, 1991.CrossRefGoogle Scholar
  17. Lakowicz, J. R., G. Laczko, H. Cherec, E. Gratton, and M. Limkeman. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys. J. 46: 463–477, 1984.PubMedCrossRefGoogle Scholar
  18. Lakowicz, J. R., H. Szmacinski, W. J. Lederer, M. S. Kirby, M. L. Johnson, and K. Nowaczyk. Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2. Cell Calcium 15: 7–27, 1994.PubMedCrossRefGoogle Scholar
  19. Ng, T., A. Squire, G. Hansra, E Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker. Imaging protein kinase Ca activation in cells. Science 283: 2085–2089, 1999.PubMedCrossRefGoogle Scholar
  20. Periasamy, A., P. Wodnicki, X. F. Wang, S. Kwon, G. W. Gordon, and B. Herman. Time resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye-laser system. Rev. Sci. Instrum. 67: 3722–3731, 1996.CrossRefGoogle Scholar
  21. Piston, D. W., G. Marriott, T. Radivoyevich, R. M. Clegg, T. M. Jovin, and E. Gratton. Wideband acoustooptic light-modulator for frequency-domain fluorometry and phosphorimetry. Rev. Sci. Instrum. 60: 2596–2600, 1989.CrossRefGoogle Scholar
  22. Press, W. H., S. A. Teukolky, and W. T. Vetterling. Numerical Recipes in C—The Art of Scientific Computing, 2nd ed. Cambridge: Cambridge University Press, 1992.Google Scholar
  23. Sanders, R., A. Draaijer, H. C. Gerritsen, P. M. Houpt, and Y. K. Levine. Quantitative Ph imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal. Biochem. 227: 302–308, 1995.PubMedCrossRefGoogle Scholar
  24. Schlick, T., and A. Fogelson. TNPACK—A truncated Newton minimization package for large scale problems: I. Algorithm and usage. ACM Trans. Math. Soft. 18: 46–70, 1992.CrossRefGoogle Scholar
  25. Schneider, P. C., and R. M. Clegg. Rapid acquisition, analysis, and display of fluorescence lifetime—resolved images for real-time applications. Rev. Sci. Instrum. 68: 4107–4119, 1997.CrossRefGoogle Scholar
  26. Scully, A. D., A. J. MacRobert, S. Botchway, P. O’Neill, A. W. Parker, R. B. Ostler, and D. Phillips Development of a laser-based fluorescence microscope with subnanosecond time resolution. J. Fluoresc. 6: 119–125, 1996.CrossRefGoogle Scholar
  27. Squire, A., and P. I. H. Bastiaens. Three dimensional image restoration in fluorescence lifetime imaging microscopy. J. Microsc. 193: 36–49, 1999.PubMedCrossRefGoogle Scholar
  28. Squire, A., R. J. Verveer, and P. I. H. Bastiaens. Multiple frequency fluorescence lifetime imaging microscopy. J. Microsc. 197: 136–149, 2000.PubMedCrossRefGoogle Scholar
  29. Straume, M., S. G. Frasier-Cadore, and M. L. Johnson. Least-squares analysis of fluorescence data. In: Topics in Fluorescence Spectroscopy, edited by J. R. Lakowicz. New York: Plenum Press, 1991.Google Scholar
  30. Sytsma, J., J. M. Vroom, C. J. Degrauw, and H. C. Gerritsen. Time gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation. J. Microsc. 191: 39–51, 1998.CrossRefGoogle Scholar
  31. Szmancinski, H., and J. R. Lakowicz. Possibility of simultaneously measuring low and high calcium concentrations using Fura-2 and lifetime-based sensing. Cell Calcium 18: 64–75, 1995.CrossRefGoogle Scholar
  32. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 76: 509–538, 1998.CrossRefGoogle Scholar
  33. Tsien, R. Y., B. J. Bacskai, and S. R. Adams. FRET for studying intracellular signaling. Trends Cell Biol. 3: 242–245, 1993.PubMedCrossRefGoogle Scholar
  34. Verkman, A. S., M. Armijo, and K. Fushimi. Construction and evaluation of a frequency domain epifluorescence microscope for lifetime and anisotropy decay measurements in subcellular domains. Biophys. Chem. 40: 117–125, 1991.PubMedCrossRefGoogle Scholar
  35. Verveer, P. J., A. Squire, and P. I. H. Bastiaens. Global analysis of fluorescence lifetime imaging microscopy data. Biophys. J. 78: 2127–2137, 2000.PubMedCrossRefGoogle Scholar
  36. Watkins, A. N., C. M. Ingersoll, G. A. Baker, and F. V. Bright. A parallel multiharmonic frequency-domain fluorometer for measuring excited-state decay kinetics following one-, two-, or three-photon excitation. Anal. Chem. 70: 3384–3396, 1998.PubMedCrossRefGoogle Scholar
  37. Wouters, F. S., P. I. H. Bastiaens. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells. Curr. Biol. 9: 1127–1130, 1999.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 2001

Authors and Affiliations

  • Peter J. Verveer
  • Anthony Squire
  • Philippe I. H. Bastiaens

There are no affiliations available

Personalised recommendations