Blood Flow Regulation in Inflammation

  • Joel Linden
Part of the Methods in Physiology Series book series (METHPHYS)


Inflammation triggers the release or synthesis of a number of mediators derived from inflammatory cells, the vasculature, and nerves (see Table 3.1) Some of these compounds produce receptor-mediated effects on vascular tissues. Mast cells and macrophages are the principal cells found in tissues that release or form factors that recruit circulating leukocytes into inflamed tissues (see Chap. 23). These factors also regulate vascular tone and permeability by activating receptors found on vascular smooth muscle cells, endothelial cells, and nerve terminals. Kinins and activated products of the complement system are also increased during inflammation and produce some of their effects by direct binding to receptors on vascular tissues. This chapter reviews how the receptors that are activated by mediators released or formed during inflammation regulate vascular responses to inflammation. The main receptors involved in these responses are summarized in Table 3.2.


Mast Cell Vascular Smooth Muscle Cell Focal Adhesion Kinase Adenosine Receptor Blood Flow Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adeagbo, A. S., and Oriowo, M. A. (1998) Histamine receptor subtypes mediating hyperpolarization in the isolated, perfused rat mesenteric pre-arteriolar bed. Eur. J. Pharmacol. 347: 237–244.CrossRefGoogle Scholar
  2. Alving, K., Matran, R., Lacroix, J. S., and Lundberg, J. M. (1988) Allergen challenge induces vasodilatation in pig bronchial circulation via a capsaicin-sensitive mechanism. Acta Physiol stand. 134: 571–572.CrossRefGoogle Scholar
  3. Ames, R. S., Li, Y., Sarau, H. M., Nuthulaganti, P., Foley, J. J., Ellis, C., Zeng, Z., Su, K., Jurewicz, A. K., Hertzberg, P. P., Bergsma, D. I., and Kumar, C. (1996). Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J. Biol. Chem. 271: 20231–20234.PubMedCrossRefGoogle Scholar
  4. Beasley, D., and Cooper, A. L., (1999) Constitutive expression of interleukin-1 alpha precursor promotes human vascular smooth muscle cell proliferation. Am. J Physiol. 276: H901 - H912.PubMedGoogle Scholar
  5. Bogdanov, Y., Rubino, A., and Burnstock, G. (1998a) Characterisation of subtypes of the P2X and P2Y families of ATP receptors in the foetal human heart. Life Sci. 62: 697–703.PubMedCrossRefGoogle Scholar
  6. Bogdanov, Y. D., Wildman, S. S., Clements, M. P., King, B. F., and Burnstock, G. (1998b) Molecular cloning and characterization of rat P2Y4 nucleotide receptor. B.J. Pharmacol. 124: 428430.Google Scholar
  7. Bunting, M., Lorant, D. E., Bryant, A. E., Zimmerman, G. A., Mcintyre, T. M., Stevens, D. I., and Prescott, S. M. (1997) Alpha toxin from clostridium perfringens induces proinflammatory changes in endothelial cells. J. Clin. Invest. 100: 565–574.PubMedCrossRefGoogle Scholar
  8. Burkegaffney, A., and Hellewell, P. G., (1996) Tumour necrosis factor-alpha-induced ICAM-1 expression in human vascular endothelial and lung epithelial cells—modulation by tyrosine kinase inhibitors. B.J. Pharmacol. 119: 1149–1158.CrossRefGoogle Scholar
  9. Cao, T., Gerard, N. P., and Brain, S. D. (1999) Use of NK1 knockout mice to analyze substance P-induced edema formation. Am. J. Physiol.—Regul. Integrat. Comp. Physiol. 46: R476 - R481.Google Scholar
  10. Christopoulos, G. Perry, K. I., Morfis, M. Tilakaratne, N., Gao, Y. Y., Fraser, N. J., Main, M. J., Foord, S. M., and Sexton, P. M. (1999) Multiple amylin receptors arise from receptor activity—modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 56: 235–242.PubMedGoogle Scholar
  11. Clough, G. F., Bennett, A. R., and Church, M. K. (1998) Effects of H1 antagonists on the cutaneous vascular response to histamine and bradykinin: a study using scanning laser Doppler imaging. Br. J., Dermatol. 138: 806–814.CrossRefGoogle Scholar
  12. Cortijo, J., Marti-Cabrera, M., Bernabeu, E., Domenech, T., Bou, J., Fernandez, A. G., Beleta, J., Palacios, J. M., and Morcillo, E. J. (1997) Characterization of 5-HT receptors on human pulmonary artery and vein: functional and binding studies. B.J. Pharmacol. 122: 1455–1463.Google Scholar
  13. Devillier, P., Baccard, N., and Advenier, C. (1999) Leukotrienes, leukotriene receptor antagonists and leukotriene synthesis inhibitors in asthma: An update. Part I: Synthesis, receptors and role of leukotrienes in asthma [Review]. Pharmacol. Res. 40: 3–13.PubMedCrossRefGoogle Scholar
  14. Doyle, M. P., Linden, J., and Duling, B. P. (1994) Nucleoside-induced arteriolar constriction: a mast cell-dependent response. Am. J. Physiol. 266: H2042–H2050.PubMedGoogle Scholar
  15. Fan, T. P., Hu, D. E., Guard, S., Gresham, G. A., and Watling, K. J. (1993) Stimulation of angiogenesis by substance P and interleukin-1 in the rat and its inhibition by NK1 or interleukin1 receptor antagonists. B.J. Pharmacol. 110: 43–49.CrossRefGoogle Scholar
  16. Flickinger, B. D., and Olson, M. S. (1999) Localization of the platelet-activating factor receptor to rat pancreatic microvascular endothelial cells. Am. J. Pathol. 254: 1353–1358.CrossRefGoogle Scholar
  17. Fredholm, B. B., Abbracchio, M. P., Burnstock, G., Dubyak, G. R., Harden, T. K., Jacobson, K. A., Schwabe, U., and Williams, M. (1997) Towards a revised nomenclature for Pl and P2 receptors. Trends in Pharmacol. Sci. 18: 79–82.CrossRefGoogle Scholar
  18. Gao, Z., Chen, T., Weber, M. J., and Linden, J. (1999) A28 adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells: cross-talk between cyclic AMP and protein kinase C pathways. J. Biol. Chem. 274: 5972–5980.Google Scholar
  19. Gasque, P., Singhrao, S. K., Neal, J. W., Gotze, O., and Morgan, B. P. (1997) Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am. J Pathol. 150: 31–41.PubMedGoogle Scholar
  20. Gawlowski, D. M., and Duran, W. N. (1986) Dose-related effects of adenosine and bradykinin on microvascular permselectivity to macromolecules in the hamster cheek pouch. Circ. Res. 58: 348–355.PubMedCrossRefGoogle Scholar
  21. Goetze, S., Xi, X. P., Kawano, Y., Kawano, H., Fleck, E., Hsueh, W. A., and Law, R. E. (1999) TNF–alpha-induced migration of vascular smooth muscle cells is MAPK dependent. Hypertens. 33: 183–189.CrossRefGoogle Scholar
  22. Gurney, A. L., Marsters, S. A., Huang, R. M., Pitti, R. M., Mark, D. T., Baldwin, D. T., Gray, A. M., Dowd, AD, Brush, A. D., Heldens, A. D., et al. (1999) Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr. Biol. 9: 215–218.PubMedCrossRefGoogle Scholar
  23. Haselton, F. R., Alexander, J. S., and Mueller, S. N. (1993) Adenosine decreases permeability of in vitro endothelial monolayers. J. App. Physiol. 74: 1581–1590.Google Scholar
  24. Holzer, P. (1998) Neurogenic vasodilatation and plasma leakage in the skin. Gen. Pharmacol. 30: 5–11.PubMedCrossRefGoogle Scholar
  25. Hornig, B., Kohler, C., and Drexler, H. (1997) Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circ. 95: 1115–1118.CrossRefGoogle Scholar
  26. Imamura, M., Lander, H. M., and Levi, R. (1996a) Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia—comparison with adenosine A1-receptors and o2-adrenoceptors. Circ. Res. 78: 475–481.PubMedCrossRefGoogle Scholar
  27. Imamura, M., Smith, N. C., Garbarg, M. and Levi, R. (1996b) Histamine h3-receptors-mediated inhibition of calcitonin gene-related peptide release from cardiac C fibers—a regulatory negative-feedback loop. Circ. Res. 78: 863–869.PubMedCrossRefGoogle Scholar
  28. Jin, X., Shepherd, R. K., Duling, B. R., and Linden, J. (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J. Clin. Invest. 100: 2849–2857.PubMedCrossRefGoogle Scholar
  29. Jones, R. I., Qian, Y., Wong, H. N., Chan, H., and Yim, A. P. (1997) Prostanoid action on the human pulmonary vascular system. [Review]. Clin. Exp. Pharmacol. Physiol. 24: 969–972.PubMedCrossRefGoogle Scholar
  30. King, B. F., Townsend-Nicholson, A., and Burnstock, G. (1998) Metabotropic receptors for ATP and UTP: exploring the correspondence between native and recombinant nucleotide receptors. [Review]. Trends Pharmacol. Sci. 19: 506–514.PubMedCrossRefGoogle Scholar
  31. Krauss, A. H., Woodward, D. F., Gibson, L. L., Protzman, C. E., Williams, L. S., Burk, R. M., Gac, T. S., Roof, M. B., Abbas, F., Marshall, K., and Senior, J. (1996) Evidence for human thromboxane receptor heterogeneity using a novel series of 9,11-cyclic carbonate derivatives of prostaglandin F2 alpha. Br. J. pharmacol. 117: 1171–1180.PubMedCrossRefGoogle Scholar
  32. Lazarowski, E. R., and Harden, T. K. (1999) Quantitation of extracellular UTP using a sensitive enzymatic assay. Br. J. Pharmacol. 127: 1272–1278PubMedCrossRefGoogle Scholar
  33. Lee, F., Grodzinsky, A. J., Libby, P., Clinton, S. K., Lark, M. W., and Lee, R. T. (1995) Human vascular smooth muscle cell-monocyte interactions and metalloproteinase secretion in culture. Arterioscl. Thromb. Vase. Biol. 15: 2284–2289.CrossRefGoogle Scholar
  34. Linden, J., and Jacobson, K. A. (1998) Molecular biology and pharmacology of recombinant human adenosine receptors. In: Cardiovascular Biology of Purines. G. Burnstock, J. G. Dobson Jr., B. T. Liang, and J. Linden, eds. Dordrecht: Kluwer, pp. 1–20.CrossRefGoogle Scholar
  35. Linden, J, Thai, T., Figler, H., and Robeva, A. S. (1999) Characterization of human A25 adenosine receptors: radioligand binding, western blotting and coupling to Gq in HEK 293 and HMC1 mast cells. Mol. Pharmacol. 56: 705–713.PubMedGoogle Scholar
  36. Malmsjo, M., Edvinsson, I., and Erlinge, D. (1998) P2U-receptor mediated endothelium—de- pendent but nitric oxide-independent vascular relaxation. Br. J. Pharmacol. 123: 719–729.PubMedCrossRefGoogle Scholar
  37. Malmsjo, M., Bergdahl, A., Moller, S., Zhao, X. H., Sun, X. Y., Hedner, T., Edvinsson, L., and Erlinge, D. (1999) Congestive heart failure induces downregulation of P2X(1)-receptors in resistance arteries. Cardiovasc. Res. 43: 219–227.PubMedCrossRefGoogle Scholar
  38. Martin, U., Bock, D., Arseniev, L. Tornetta, M. A., Ames, R. S., Bautsch, W., Kohl, J., Ganser, A., and Klos, A. (1997) The human C3a receptor is expressed on neutrophils and monocytes, but not on B or T lymphocytes. J. Exp. Med. 186: 199–207.PubMedGoogle Scholar
  39. McDonald, D. M., Thurston, G., and Baluk, P. (1999) Endothelial gaps as sites for plasma leakage in inflamation. Microcirc. 6: 7–22.Google Scholar
  40. Murthy, K. S., and Makhlouf, G. M. (1998) Coexpression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-betal via Galphaq/11 and to PLC-beta3 via Gbetagammai3. J. Biol. Chem. 273: 4695–4704.PubMedCrossRefGoogle Scholar
  41. Node, K. Kitakaze, M., Kosaka, H., Minamino, T., and Hori, M. (1997) Bradykinin mediation of ca2+;-activated k+ channels regulates coronary blood flow in ischemic myocardium. Cire. 95: 1560–1567.Google Scholar
  42. Osipchuk, Y., and Cahalan, M. (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359: 241–244.PubMedCrossRefGoogle Scholar
  43. Predescu, D., Ihida, K., Predescu, S., and Palade, G. E. (1996) The vascular distribution of the platelet-activating factor receptor. Eur. J Cell. Biol. 69: 86–98.PubMedGoogle Scholar
  44. Ristimaki, A., Narko, K., Enholm, B., Joukov, V., and Alitalo, K. (1998) Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J. Biol. Chem. 273: 8413–8418.PubMedCrossRefGoogle Scholar
  45. Sakamoto, T., Barnes, P. I., and Chung, K. F. (1993) Effect of CP-96, 345, a non-peptide NK1 receptor antagonist, against substance P-, bradykinin-and allergen-induced airway microvascular leakage and bronchoconstriction in the guinea pig. Eur. J Pharmacol. 231: 31–38.PubMedCrossRefGoogle Scholar
  46. Salonen, R. O., Webber, S. E., and Widdicombe, J. G. (1988) Effects of neuropeptides and capsaicin on the canine tracheal vasculature in vivo. Br. J. Pharmacol. 95: 1262–1270.PubMedCrossRefGoogle Scholar
  47. Schremmerdanninger, E., Offner, A., Siebeck, M., and Roscher, A. A. (1998) Bl bradykinin receptors and carboxypeptidase m are both upregulated in the aorta of pigs after 1ps infusion. Biochem. Biophys. Res. Commun. 243: 246–252.CrossRefGoogle Scholar
  48. Seyedi, N., Maruyama, R., and Levi, R., (1999) Bradykinin activates a cross-signaling pathway between sensory and adrenergic nerve endings in the heart: A novel mechanism of ischemic norepinephrine release? J. Pharmacol. Exp. Ther. 290: 656–663.PubMedGoogle Scholar
  49. Shryock, J. C., Snowdy, S., Baraldi, P. G., Cacciari, B., Spalluto, G., Monopoli, A., Ongini, E., Baker, S. P., and Belardinelli, L. (1998) A(2A)-adenosine receptor reserve for coronary vasodilation. Circ. 98: 711–718.CrossRefGoogle Scholar
  50. Smits, P., Lenders, J. W. M., Willemsen, J.J., and Thien, T. (1991) Adenosine attenuates the response to sympathetic stimuli in humans. Hypertens. 18: 216–223.CrossRefGoogle Scholar
  51. Soldi, R., Sanavio, F., Aglietta, M., Primo, L., Defilippi, P., Marchisio, P. C., and Bussolino, F., (1996) Platelet-activating factor (Paf) Induces the early tyrosine phosphorylation of focal adhesion kinase (P125(Fak) In human endothelial cells. Oncogene 13: 515–525PubMedGoogle Scholar
  52. Sullivan, G. W., and Linden, J. (1998) Role of A2,, adenosine receptors in inflammation. Drug. Dev. Res. 45: 103–112.Google Scholar
  53. Sultana, C., Shen, Y. M., Johnson, C., and Kalra, V. K. (1999) Cobalt chloride-induced signaling in endothelium leading to the augmented adherence of sickle red blood cells and transendothelial migration of monocyte-like HL-60 cells is blocked by PAF—receptor antagonist. J. Cell. Physiol. 179: 67–78.PubMedCrossRefGoogle Scholar
  54. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A., and Buell, G. (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272: 735–738.PubMedCrossRefGoogle Scholar
  55. Valera, S., Hussy, N., Evans, R. J., Adami, N., North, R. A., Surprenant, A., and Buell, G. (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP [see comments]. Nature 371: 516–519.PubMedCrossRefGoogle Scholar
  56. Vianna, R. M., and Calixto, J. B. (1998) Characterization of the receptor and the mechanisms underlying the inflammatory response induced by des-Arg9-BK in mouse pleurisy. B. J. Pharmacol. 123: 281–291.CrossRefGoogle Scholar
  57. Walch, L., Labat, C., Gascard, J. P. de M, Brink, C. and Norel, X. (1999) Prostanoid receptors involved in the relaxation of human pulmonary vessels. B. J. Pharmacol. 126: 859–866.CrossRefGoogle Scholar
  58. Watanabe, H., Kuhne, W., Schwartz, P., and Piper, H. M. (1992) A2-adenosine receptor stimulation increases macromolecule permeability of coronary endothelial cells. Am. J Physiol. 262: H1174 - H1181.PubMedGoogle Scholar

Copyright information

© American Physiological Society 2001

Authors and Affiliations

  • Joel Linden

There are no affiliations available

Personalised recommendations