Advertisement

Transmigration of Leukocytes

  • Brian Stein
  • Yeesim Khew-Goodall
  • Mathew Vadas
Part of the Methods in Physiology Series book series (METHPHYS)

Abstract

Migration of cells through a vascular endothelial monolayer is an essential step in inflammation, and thus in host defense and healing. Migration of neutrophils is the most studied form, providing basis for understanding the migration of other cell types. Of the series of events involved in transmigration, this chapter will limit its scope to the process of moving across the endothelial monolayer, and refer briefly to events immediately surrounding that process. Other events and mediators, such as endothelial activation and firm adhesion and the selectins, integrins, and chemoattractants, are dealt with elsewhere in this volume.

Keywords

Transendothelial Migration Endothelial Monolayer Firm Adhesion Endothelial Cell Monolayer Myosin Light Chain Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, R. H. (1990) Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J. Physiol. (Lond.) 428: 1–13.Google Scholar
  2. Adamson, R. H. (1993) Microvscular endothelial cell shape and size in situ. Microvasc. Res. 46: 77–88.PubMedCrossRefGoogle Scholar
  3. Albelda, S. M., Muller, W. A., Buck, C. A., and Newman, P. J. (1991) Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell—cell adhesion molecule. J. Cell Biol. 114: 1059–1068.PubMedCrossRefGoogle Scholar
  4. Albelda, S. M., Smith, C. W., and Ward, P. A. (1994) Adhesion molecules and inflammatory injury. FASEB J 8: 504–512.PubMedGoogle Scholar
  5. Allport, J. R., Ding, H., Collins, T., Gerritsen, M. E., and Luscinskas, F. W. (1997) Endothelial-dependent mechanisms regulate leukocyte transmigration: a process involving the proteasome and disruption of the vascular endothelial—cadherin complex at endothelial cell-to-cell junctions. J. Exp. Med. 186: 517–527.PubMedCrossRefGoogle Scholar
  6. Almenar-Queralt, A., Duperray, A., Miles, L., Felez, J., and Altieri, D.C. (1995) Apical topography and modulation of ICAM-1 expression on activated endothelium. Am. J. Pathol. 147: 1278–1288.PubMedGoogle Scholar
  7. Amorino, G. P., and Hoover, R. L. (1998) Interactions of monocytic cells with human endothelial cells stimulate monocytic metalloproteinase production. Am. J. Pathol. 152: 199–207.PubMedGoogle Scholar
  8. Anderson, D. C., and Springer, T. A. (1987) Leukocyte adhesion deficency: An inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Ann. Rev. Med. 38: 175–194.PubMedCrossRefGoogle Scholar
  9. Anderson, D. C., Rothlein, R., Marlin, S. D., Krater, S. S., and Smith, C. W. (1990) Impaired transendothelial migration by neonatal neutrophils: abnormalities of Mac-1 (CD1lb/CD18)dependent adherence reactions. Blood 76: 2613–2621.PubMedGoogle Scholar
  10. Andrew, D. P., Spellberg, J. P., Takimoto, H., Schmits, R., Mak, T. W., and Zukowski, M. M. (1998) Transendothelial migration and trafficking of leukocytes in LFA-1-deficient mice. Eur. J. Immunol. 28: 1959–1969.PubMedCrossRefGoogle Scholar
  11. Arroyo, A. G., Campanero, M. R., Sanchez-Mateos, P., Zapata, J. M., Ursa, M. A., and del Pozo, M. A. (1994) Induction of tyorosine phosphrylaion during ICAM-3 and LFA-1 mediated intercellular adhesion and its regulation by the CD-45 tyrosine phosphatase. J. Cell Biol. 126: 1277–1286.PubMedCrossRefGoogle Scholar
  12. Ayalon, O., Sabanai, H., Lampugnani, M. G., Dejana, E., and Geiger, B. (1994) Spatial and temporal relationships between cadherins and PECAM-1 in cell-cell junctions of human endothelial cells. J. Cell Biol. 126: 247–258.PubMedCrossRefGoogle Scholar
  13. Baggiolini, M., Boulay, F., Badwey, J. A., and Curnutte, J. T. (1993) Activation of neutrophil leukocytes: chemoattractant receptors and respiratory burst. FASEB J 7: 1004–1010.PubMedGoogle Scholar
  14. Barbee, K. A., Davies, P. F., and Lal, R. (1994) Shear stress-induced reorganisation of surface topography of living endothelial cells imaged by atomic microscopy. Cir. Res. 74: 163–171.CrossRefGoogle Scholar
  15. Beesley, J. E., Pearson, J. D., Hutchings, A., Carleton, J. S., and Gordon, J. L. (1978) Interaction of leukocytes with vascular cells in culture. J. Cell Sci. 33: 85–101.PubMedGoogle Scholar
  16. Bevario, F., Bertocchi, F., Dejana, E., and Bussolino, F. (1988) IL-1 induced adhesion of polymorphonuclear leukocytes to cultured endothelial cells: role for platelet-activating factor. J. Immunol. 141: 3391–3397.Google Scholar
  17. Beyer, E. C. (1993) Gap junctions. Int. Rev. Cytol. 137: 1–38.CrossRefGoogle Scholar
  18. Bianchi, G., Sironi, M., Ghibaudi, E., Selvaggini, C., Elices, M., Allavena, P., and Mantovani, A. (1993) Migration of natural killer cells across endothelial cell monolayers. J. Immunol. 151: 5135–5144.PubMedGoogle Scholar
  19. Bird, I. N., Spragg, J. H., Ager, A., and Matthews, N. (1993) Studies of lymphocyte transendothelial migration: analysis of migrated cell phenotypes with regard to CD31 (PECAM-1), CD45RA and CD45RO. Immunol. 80: 553–560.Google Scholar
  20. Blystone, S. D., Graham, I. L., Lindberg, F. P., and Brown, E. J. (1994) Integrin a, b3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor a5 b, J. Cell Biol. 127: 1129–1137.PubMedCrossRefGoogle Scholar
  21. Blystone, S. D., Lindberg, F. P., LaFlamme, S. E., and Brown, E. J. (1995) Integrin b3 cytoplasmic tail is necessary and sufficient for regulation of a5 b, phagocytosis by a„ b3 and integrinassociated protein. J. Cell Biol. 130: 745–754.PubMedCrossRefGoogle Scholar
  22. Bochner, B. S., Luscinskas, F. W., Gimbrone, M. A. Jr., Newman, W., Sterbinsky, S. A., DerseAnthony, C. P., Klunk, D., and Schleimer, R. P. (1991) Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J. Exp. Med. 173: 1553–1557.PubMedCrossRefGoogle Scholar
  23. Bogen, S., Pak, J., Garifallou, M., Deng, X., and Muller, W. A. (1994) Monoclonal antibody to murine PECAM-1 (CD-31) blocks acute inflammation in vivo. J. Exp. Med. 17, 1059: 1064.Google Scholar
  24. Bradley, J. R., Thiru, S., and Pober, J. S. (1995) Hydrogen peroxide-induced endothelial retraction is accompanied by a loss of the normal spatial organization of endothelial cell adhesion molecules. Am. J. Pathol. 147: 627–641.PubMedGoogle Scholar
  25. Brady, H. R., Lamas, S., Papayianni, A., Takata, S., Matsubara, M., and Marsden, P. A. (1995) Lipoxygenase product formation and cell adhesion during neutrophil-glomerular endothelial cell interaction. Am. J. Physiol. 268: F1 - F12.PubMedGoogle Scholar
  26. Brindle, N.PJ. (1993) Growth factors in endothelial regeneration. Cardiovasc. Res. 27: 1162–1172.PubMedCrossRefGoogle Scholar
  27. Brown, E., Hooper, L., Ho, T., and Gresham, H. (1990) Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J. Cell BioL 111: 2785–2794.PubMedCrossRefGoogle Scholar
  28. Bruzzone, R., Haefliger, J. A., Gimlich, R. L., and Paul, D. L. (1993) Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol. Biol. Cell 4: 7–20.PubMedGoogle Scholar
  29. Bullard, D. C., Qin, L., Lorenzo, I., Quinlin, W. M., Doyle, N. A., Bosse, R., Vestweber, D., Doerschuk, C. M., and Beaudet, A. L. (1995) P-selectin/ICAM-1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveoli. J. Clin. Invest. 95: 1782–1788.PubMedCrossRefGoogle Scholar
  30. Burns, A. R., and Doerschuk, C. M. (1994) Quantitation of L-selectin and CD18 expression on rabbit neutrophils during CD18-independent and CD18-dependent emigration in the lung. J. Immunol 153: 3177–3188PubMedGoogle Scholar
  31. Burns, A. R., Takei, F., and Doerschuk, C. M. (1994) Quantitation of ICAM-1 expression in mouse lung during pneumonia. J. Immunol. 153: 3189–3198.PubMedGoogle Scholar
  32. Burns, A. R., Walker, D. C., Brown, E. S., Thurmon, L. T., Bowden, R. A., Keese, C. R., Simon, S. I., Entman, M. L., and Smith, C. W. (1997) Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J. Immunol. 159: 2893–2903.PubMedGoogle Scholar
  33. Burns, A. R., Bowden, R. A., Abe, Y., Walker, D. C., Simon, S. I., Entman, M. L., and Smith, C. W. (1999) P-selectin mediates neutrophil adhesion to endothelial cell borders. J. Leuk. BioL 65: 299–306.Google Scholar
  34. Butcher, E. C. (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67: 1033–1036.PubMedCrossRefGoogle Scholar
  35. Carlos, T. M., and Harlan, J. M. (1994) Leukocyte-endothelial adhesion molecules. Blood 84: 2068–2101.PubMedGoogle Scholar
  36. Carter, S. B. (1965) Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208: 1183–1187.PubMedCrossRefGoogle Scholar
  37. Casale, T. B., Abbas, M. K., and Carolan, E.J. (1992) Degree of neutrophil chemotaxis is de- pendent upon the chemoattractant and barrier. Am. J. Respir. Cell Mol. Biol. 7: 112–117.PubMedCrossRefGoogle Scholar
  38. Caveda, L., Corada, M., Padura, I. M., Del Mascio, A., Brevario, F., Lampugnani, M. G., and Dejana, E. (1994) Structural characteristics and functional role of endothelial cell to cell junctions. Endothelium 2: 1–10.CrossRefGoogle Scholar
  39. Chosay, J. G., Fisher, M. A., Farhood, A., Ready, K. A., Dunn, C. J., and Jaeschke, H. (1998) Role of PECAM-1 (CD31) in neutrophil transmigration in murine models of liver and peritoneal inflammation. Am. J. Physiof 274: G776 - G782.Google Scholar
  40. Christofidou-Solomidou, M., Nakada, M. T., Williams, J., Muller, W. A. and DeLisser, H. M. (1997) Neutrophil platelet endothelial cell adhesion molecule-1 participates in neutrophil recruitment at inflammatory sites and is down-regulated after leukocyte extravasation. J. Immunol. 158: 4872–4878.PubMedGoogle Scholar
  41. Chuluyan, H. E., and Issekutz, A. C. (1993) VLA-4 integrin can mediate CD11/CD18independent transendothelial migration of human monocytes. J. Clin. Invest. 92: 2768–2777.PubMedCrossRefGoogle Scholar
  42. Chuluyan, H. E., Osborn, L., Lobb, R., and Issekutz, A. C. (1995) Domains 1 and 4 of vascular cell adhesion molecule-1 (CD-106) both support very late activation antigen-4 (CD-49d/CD29)-dependent monocyte transendothelial migration. J. Immunol. 155: 3135–3144.PubMedGoogle Scholar
  43. Clark, P., Connolly, P., Curtis, A.S.G., Dow, J.A.T., and Wilkinson, C.D.W. (1990) Topographic control of cell behaviour: II. multiple grooved substrata. Development 108: 635–644.PubMedGoogle Scholar
  44. Clark, P., Connolly, P., and Moores, G. R. (1992) Cell guidance by micropatterned adhesiveness in vitro. J. Cell Sci. 103: 287–292.PubMedGoogle Scholar
  45. Clayton, A., Evans, R. A., Pettit, E., Hallett, M., Williams, J. D., and Steadman, R. (1998) Cellular activation through the ligation of intercellular adhesion molecule-1. J. Cell Sci. 111: 443–453.PubMedGoogle Scholar
  46. Cooper, D., Lindberg, F. P., Gamble, J. R., Brown, E. J., and Vadas, M. A. (1995) Transendothelial migration of neutrophils involves integrin-associated protein (CD47). Proc. Natl. Acad. Sci USA 92: 3978–3982.PubMedCrossRefGoogle Scholar
  47. Crockett-Torabi, E., Sulenbarger, B., Smith, C. W., and Fantone, J. C. (1995) Activation of human neutrophils through L-selectin and Mac-1 molecules. J. Immunol 154: 2291–2302.PubMedGoogle Scholar
  48. Davies, P. F. (1995) Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75: 519–560.PubMedGoogle Scholar
  49. De Bruyn, P.P.H., and Cho, Y. (1990) Structure and function of high endothelial postcapillary venules in lymphocyte circulation. Curr. Topics Pathol 84: 85–101.CrossRefGoogle Scholar
  50. de Jong, A. L., Green, D. M., Trial, J. A., and Birdsall, H. H. (1996) Focal effects of mononuclear leukocyte transendothelial migration: TNF-alpha production by migrating monocytes promotes subsequent migration of lymphocytes. J. Leukoc. Biol. 60: 129–136.PubMedGoogle Scholar
  51. DeLisser, H. M., Newman, P. J., and Albelda, S. M. (1993) Platelet endothelial cell adhesion molecule (CD31). Curr. Top. Microbiol. Immunol 184: 37–45.PubMedCrossRefGoogle Scholar
  52. Del Maschio, A., Zanetti, A., Corada, M., Rival, Y., Ruco, L., Lampugnani, M. G., and Dejana, E. (1996) Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J. Cell Biol. 135: 497–510.PubMedCrossRefGoogle Scholar
  53. Devreotes, P. N. (1988) Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol 4: 649–686.PubMedCrossRefGoogle Scholar
  54. Diamond, M. S., Johnson, S. C., Dustin, M. L., McCaffery, P., and Springer, T. A. (1989) Differential effects on leukocyte functions of CD-11a, CD-11b, and CD-18 monoclonal antibodies. In Leukocyte Typing W. Knapp, B. Dorken, W. R. Gilks, and S. Shaw, ed. London: Oxford University Press, vol. 4, p. 570–574.Google Scholar
  55. Diamond, M. S., Staunton, D. E., de Fougerolles, A. R., Stacker, S. A., Garcia Aguilar, J., Hibbs, M. L., and Springer, T. A. (1990) ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/ CD18). J. Cell Biol. 111: 3129–3139.PubMedCrossRefGoogle Scholar
  56. Diamond, M. S., Staunton, D. E., Marlin, S. D., and Springer, T. A., (1991) Binding of the integrin Mac-1 (CD-11b/CD-18) to the third immunoglobulin like domain of ICAM-1 (CD-54) and its regulation by glycosylation. Cell 65: 961–971.PubMedCrossRefGoogle Scholar
  57. Doerschuk, C. M., Winn, R. K., Coxson, H. O., and Harlan, J. M. (1990) CD-18—dependent and independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J. Immunol. 144: 2327–2333.PubMedGoogle Scholar
  58. Doerschuk, C. M., Quinlan, W. M., Doyle, N. A., Bullard, D. C., Vestweber, D., Jones, M. L., Takei, F., Ward, P. A., and Beaudet, A. L. (1996) The role of P-selectin and ICAM-1 in lung injury as determined by blocking antibodies and mutant mice. J. Immunol 157: 4609–4614.PubMedGoogle Scholar
  59. Doukas, J., Shepro, D., and Hechtman, H. (1987) Vasoactive amines directly modify endothelial cells to affect polymorphonuclear leukocyte diapedesis in vitro. Blood 69: 1563–1569.PubMedGoogle Scholar
  60. Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A., and Springer, T. A. (1986) Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 137: 245–254.PubMedGoogle Scholar
  61. Dustin, M. L., and Springer, T. A. (1989) T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341: 619–624.PubMedCrossRefGoogle Scholar
  62. Ebisawa, M., Bochner, B. S., Georas, S. N., and Schleimer, R. P. (1992) Eosinophil transendothelial migration induced by cytokines. I. Role of endothelial and eosinophil adhesion molecules in IL-1 beta-induced transendothelial migration. J. Immunol. 149: 4021–4028.PubMedGoogle Scholar
  63. Edwards, S. W. (1994) Biochemistry and Physiology of the Neutrophil. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  64. Fawcett, J., Buckley, C., Hotness, C. L., I. N. Bird, J. H. Spragg, J. Saunders, A. Harris, and D. L. Simmons. (1995) Mapping the homotypic binding sites in CD31 and the role of CD31 adhesion in the formation of interendothelial cell contacts. J. Cell Biol. 128: 1229–1241.PubMedCrossRefGoogle Scholar
  65. Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F., and Dvorak, A. M. (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187: 903–915.PubMedCrossRefGoogle Scholar
  66. Foxman, E. F., Campbell, J.J., and Butcher, E. C. (1998) Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139: 1349–1369.CrossRefGoogle Scholar
  67. Franke, W. W., Cowin, P., Grund, C., Kuhn, C., and Kapprell, H-P. (1988) The endothelial junction: the plaque and its components. In Endothelial Cell Biology in Health and Disease, N. Simionescu and M. Simionescu, eds. New York: Plenum, 147–166.CrossRefGoogle Scholar
  68. Friedl, P., Noble, P. B., and Zanker, K. S. (1995) T lymphocyte locomotion in a three-dimensional collagen matrix. Expression and function of cell adhesion molecules. J. Immunol. 154: 4973–4985.PubMedGoogle Scholar
  69. Fujimoto, T., Fujimura, K., Noda, M., Takafuta, T., Shimomura, T., and Kuramoto, A. (1995) 50-kD Integrin-associated protein does not detectably influence several functions of glycoprotein IIb-IIIa complex in human platelets. Blood 86: 2174–2182.Google Scholar
  70. Furie, M. B., Cramer, E. B., Naprstek, B. L., and Silverstein, S. C. (1984) Cultured endothelial cell monolayers that restrict the transendothelial passage of macromolecules and electrical current. J. Cell BioL 98: 1033–1042.PubMedCrossRefGoogle Scholar
  71. Furie, M. B., Naprstek, B. L., and Silverstein, S. C. (1987) Migration of neutrophils across mono-layers of cultured microvascular endothelial cells. J. Cell Sci. 88: 161–175.PubMedGoogle Scholar
  72. Furie, M. B., and McHugh, D. D. (1989) Migration of neutrophils across endothelial monolayers is stimulated by treatment of the monolayers with interleukin-1 or tumor necrosis factor-alpha. J. Immunol. 143: 3309–3317.PubMedGoogle Scholar
  73. Furie, M. B., Tancinco, M. C., and Smith, C. W. (1991) Monoclonal antibodies to leukocyte integrins CD11a/CD18 and CD11b/CD18 or intercellular adhesion molecule-1 inhibit chemoattractant-stimulated neutrophil transendothelial migration in vitro. Blood 78: 2089–2097.PubMedGoogle Scholar
  74. Furie, M. B., Burns, M. J., Tancinco, M. C., Benjamin, C. D., and Lobb, R. R. (1992) E-selectin (endothelial-leukocyte adhesion molecule-1) is not required for the migration of neutrophils across IL-I-stimulated endothelium in vitro. J. Immunol 148: 2395–2404.PubMedGoogle Scholar
  75. Gao, J. X., Issekutz, A. C., and Issekutz, T. B., (1994) Neutrophils migrate to delayed-type hypersensitivity reactions in joints, but not in skin. Mechanism is leukocyte function-associated antigen-1-/Mac-1-independent. J. Immunol. 153: 5689–5697.PubMedGoogle Scholar
  76. Garcia, J.G.N., Davis, H. W., and Patterson, C. E. (1995) Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J. Cell. Physiol. 163: 510–522.PubMedCrossRefGoogle Scholar
  77. Garcia, J.G.N., Verin, A. D., Herenyiova, M., and English, D. (1998) Adherent neutrophils activate endothelial myosin light chain kinase: role in transendothelial migration. J Appi. Physiol. 84: 1817–1821.Google Scholar
  78. Goeckeler, Z. M., and Wysolmerski, R. B. (1995) Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J. Cell BioL 130: 613–627.PubMedCrossRefGoogle Scholar
  79. Gopalan, P. K., Smith, C. W., Lu, H., Berg, E. L., McIntyre, L. V., and Simon, S. I. (1997) Neutrophil CD18-dependent arrest on intracellular adhesion molecule 1 (ICAM-1) in shear dependent flow can be activated through L-selectin. Immunol. 158: 367–375.Google Scholar
  80. Gotsch, U., Borges, E., Bosse, R., Boggenmeyer, E., Simon, M., Mossmann, H., and Vest-weber, D. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J. Cell Sci. 110: 583–588.Google Scholar
  81. Grant, L. (1973) The sticking and emigration of white blood cells in inflammation. In The Inflammatory Process. B. Zweifach, L. Grant, and L. McCluskey, New York: Academic Press, pp. 205–249.Google Scholar
  82. Guinan, E. C., Smith, B., Davies, P. F., and Pober, J. S. (1988) Cytoplasmic transfer between endothelium and lymphocytes. Am. J. Pathol. 132: 406–409.PubMedGoogle Scholar
  83. Hakkert, B. C., Kuijpers, T. W., Leeuwenberg, J. F., van Mourik, J. A. and Roos, D. (1991) Neutrophil and monocyte adherence to and migration across monolayers of cytokine-activated endothelial cells; the contribution of CD18, ELAM-1, and VLA-4. Blood 78: 2721–2726.PubMedGoogle Scholar
  84. Harlan, J. M., Winn, R. K., Vedder, N. B., Doerschuk, C. M., and Rice, C. L. (1992) In vivo models of leukocyte adherence to endothelium. In Adhesion: Its Role in Inflammatory Disease, J. M. Harlan and D. Y. Liu, eds. New York: Freeman, pp. 117–150.Google Scholar
  85. Harris, A. K. (1994) Locomotion of tissue culture cells considered in relation to ameboid locomotion. Int. Rev. Cytol. 150: 35–68.PubMedCrossRefGoogle Scholar
  86. Hauzenberger, D., Klominek, J., and Sundqvist, K. G. (1994) Functional specialization of fibronectin-binding beta 1-integrins in T lymphocyte migration. J. Immunol 153: 960–971.PubMedGoogle Scholar
  87. Hill, M. E., Bird, I. N., Daniels, R. H., Elmore, M. A., and Finnen, M. J. (1994) Endothelial cell-associated platelet-activating factor primes neutrophils for enhanced superoxide production and arachidonic acid release during adhesion to but not transmigration across IL-1 beta-treated endothelial monolayers. J. Immunol 153: 3673–3683.PubMedGoogle Scholar
  88. Hixenbaugh, E. A., Goeckeler, Z. M., Papaiya, N. N., Wysolmerski, R. B., Silverstein, S. C., and Huang, A. J. (1997) Stimulated neutrophils induce myosin light chain phosphorylation and isometric tension in endothelial cells. Am. J. Physiol. 273: H981 - H988.PubMedGoogle Scholar
  89. Hofman, P., Selva, E., LeNegrate, G., d’Andrea L., Guerin, S., Rossi, B., and Auberger, P. (1998) CDIC inhibitors increase f-Met-Leu-Phe-induced neutrophil transmigration. J Leuk. Biol. 63: 1998, pp 312–320.Google Scholar
  90. Hsu, M. H., Chiang, S. C., Ye, R. D., and Prossnitz, E. R. (1997) Phosphorylation of the N-formyl peptide receptor is required for receptor internalization but not chemotaxis. J. Biol. Chem. 272: 29426–29429.PubMedCrossRefGoogle Scholar
  91. Huang, A. J., and Silverstein, S. C. (1992) Mechanisms of neutrophil migration across the endothelium. In Endothelial cell dysfunctions, N. Simionescu and M. Simionescu, eds. New York: Plenum Press, pp. 201–232.Google Scholar
  92. Huang, A. J., Manning, J. E., Bandak, T. M., Ratau, M. C., Hanser, K. R., and Silverstein, S. C. (1993) Endothelial cell cytosolic free calcium regulates neutrophil migration across mono-layers of endothelial cells. J. Cell. Biol. 120: 1371–1380.PubMedCrossRefGoogle Scholar
  93. Huang, C., Friend, D. S., Qiu, W. T., Wong, G. W., Morales, G., Hunt, J., and Stevens, R. L. (1998) Induction of a selective and persistent extravasation of neutophils into the peritoneal cavity by tryptase mouse mast cell protease 6, J. Immunol. 160: 1910–1919.PubMedGoogle Scholar
  94. Huber, A. R., and Weiss, S. J., (1989) Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J. Clin. Invest. 83: 1122–1136.PubMedCrossRefGoogle Scholar
  95. Huber, A. R., Kunkel, S. L., Todd, R. F., and Weiss, S. J., (1991) Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254:99–102. [published errata appear in Science 1991 (Nov 1) 254 (5032):631 and 1991 (Dec 6 254 (5037): 1435 ].Google Scholar
  96. Hynes, R. O. (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 1125.CrossRefGoogle Scholar
  97. Imhoff, B. A., and Dunon, D. (1995) Leukocyte migration and adhesion. Advances Immunol. 58: 345–416.CrossRefGoogle Scholar
  98. Issekutz, A. C., and Issekutz, T. B. (1992) The contribution of LFA-1 (CD11a/CD18) and MAC-1 (CD11b/CD18) to the in vivo migration of polymorphonuclear leucocytes to inflammatory reactions in the rat. Immunol. 76: 655–661.Google Scholar
  99. Issekutz, A. C., Chuluyan, H. E., and Lopes, N. (1995) CD11/CD18-independent transendothelial migration of human polymorphonuclear leukocytes and monocytes: involvement of distinct and unique mechanisms. J.Leukoc Biol. 57: 553–561.PubMedGoogle Scholar
  100. Issekutz, T. B. (1995) In vivo monocyte migration to acute inflammatory reactions, IL-lalpha, TNF-alpha, IFN-gamma, and C5a utilizes LFA-1, Mac-1, and VLA-4 J. Immunol. 154: 6533–6540.PubMedGoogle Scholar
  101. Jara, P. I., Boric, M. P., and Saez, J. C. (1995) Leukocytes express connexin 43 after activation with lipopolysaccharide and appear to form gap junctions with endothelial cells after ischemia-reperfusion. Proc. Natl. Acad. Sci USA 92: 7011–7015.PubMedCrossRefGoogle Scholar
  102. Jones, D. H., Schmalstieg, F. C., Dempsey, K., Krater, S. S., Nannen, D. D., Smith, C. W., and Anderson, D. C. Subcellular distribution and mobilization of MAC-1 (CD11b/CD18) in neonatal neutrophils. Blood 75: 488–498.Google Scholar
  103. Jones, S. L., Knaus, U. G., Bokoch, G. M., and Brown, E. J. (1998) Two signaling mechanisms for activation of alphaM beta2 avidity in polymorphonuclear neutrophils. J. Biol. Chem. 273: 10556–10566.PubMedCrossRefGoogle Scholar
  104. Jung, U., Norman, K. E., Ramos, C. L., Scharffetter-Kochanek, K., Beaudet, A. L., and Ley, K. (1998) Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J. Clin. Invest. 102: 1526–1533.PubMedCrossRefGoogle Scholar
  105. Kew, R. R., Peng, T., DiMartino, S. J., Madhavan, D., Weinman, S. J., Cheng, D., and Prossnitz, E. R. (1999) Undifferentiated U937 cells transfected with chemoattractant receptors: a model system to investigate chemotactic mechanisms and receptor structure/function relationships. J. Leuk. Biol. 61: 329–337.Google Scholar
  106. Kielbassa, K., Schmitz, C., and Gerke, V. (1998) Disruption of endothelial microfilaments selec- tively reduces the transendothelial migration of monocytes. Exp. Cell Res. 243: 129–141.PubMedCrossRefGoogle Scholar
  107. Kishimoto, T. K., and Anderson, D. C. (1992) The role of integrins in inflammation. In Inflammation. Basic Principles and Clinical Correlates, J. I. Gatlin, I. M. Goldstein, and R. Snyderman, eds. New York: Raven Press, New York 1992 pp. 353–406.Google Scholar
  108. Kowalczyk, A. P., Tullch, R. H., and McKeown-Longo, P. J. (1990) Polarized fibronectin eecretion and localised matrix assembly sites correlate with subendothelial matrix formation. Blood 75: 2335–2342.PubMedGoogle Scholar
  109. Kowalczyk, A. P., and McKeown-Longo, P. J. (1992) Basolateral distribution of fibronectin matrix assembly sites on vascular endothelial monolayers is regulated by substratum fibronection. J. Cell. Physiol. 152: 126–134.PubMedCrossRefGoogle Scholar
  110. Kubes, P., Niu, X., Smith, C. W., Kehrli, M. E., Reinhardt, P. H., and Woodman, R. C. (1995) A novel betal-dependent adhesion pathway on neutrophils: a mechanism invoked by dihydrocytochalsin B or endothelial transmigration. FASEB J 9: 1103–1111.PubMedGoogle Scholar
  111. Kuijpers, T. W., Hakkert, B. C., Hart, M. H., and Roos, D. (1992a) Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells: a role for platelet-activating factor and IL-8. J. Cell Biol$1117:565–577. 1992a, pp. 565–572Google Scholar
  112. Kuijpers, T. W., Hoogerwerf, M., and Roos, D. (1992b) Neutrophil migration across monolayers of resting or cytokine-activated endothelial cells. Role of intracellular calcium changes and fusion of specific granules with the plasma membrane. J. Immunol. 148: 72–77.PubMedGoogle Scholar
  113. Kuijpers, T. W., Mul, E. P., Blom, M., Kovach, N. L., Gaeta, F. C., Tollefson, V., Elices, M. J., and Harlan, J. M. (1993) Freezing adhesion molecules in a state of high-avidity binding blocks eosinophil migration. J. Exp. Med. 178: 279–284.PubMedCrossRefGoogle Scholar
  114. Kusterer, K., Bojunga, J., Enghofer, M., Heidenthal, E., Usadel, K. H., Kolb, H., and Martin, S. (1998) Soluble ICAM-1 reduces leukocyte adhesion to vascular endothelium in ischemiareperfusion injury in mice. Am. J. Physiol. 275: G377 - G380.PubMedGoogle Scholar
  115. Kvietys, P. R., and Granger, D. N. (1997) Endothelial cell monolayers as a tool for studying microvascular pathophysiology. Am. J. Physiol. 273: G1189 - G1199.PubMedGoogle Scholar
  116. Lackie, J. M. (1984) Cell Movement and Cell Behavior. London: Unwin & Allen.Google Scholar
  117. Lampugnani, M. G., Resnati, M., Dejana, E., and Marchisio, P. C. (1991) The role of integrins in the maintenance of endothelial monolayer integrity. J. Cell Biol. 112: 479–490.PubMedCrossRefGoogle Scholar
  118. Lampugnani, M. G., Resnati, M., Raiteri, M., Lampugnani, M. G., Resnati, M., Raiteri, M., Pigott, R., Pisacane, A., Houen, G., Ruco, L. P., and Dejana, E. (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J. Cell Biota 118: 1511–1522.CrossRefGoogle Scholar
  119. Lampugnani, M. G., Corada, M., Caveda, L., Breviario, F., Ayalon, O., Geiger, B., and Dejana, E. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VEcadherin). J. Cell Biol. 129: 203–217.Google Scholar
  120. Lawrence, M. B., Smith, C. W., Eskin, S. G., and McIntire, L. V. (1990) Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood 75: 227–237.PubMedGoogle Scholar
  121. Leppert, D., Waubant, E., Galardy, R., Bunnett, N. W., and Hauser, S. L. (1995) T-cell gelatinases mediate basement membrane transmigration in vitro. J. Immunol. 154: 4379–4389.PubMedGoogle Scholar
  122. Liao, F., Huynh, H. K., Eiroa, A., Greene, T., Polizzi, E., and Muller, W. A. (1995) Migration of monocytes across endothelium and passage through extra-cellular matrix involve separate molecular domains of PECAM-1. J. Exp. Med. 182: 1337–1343.PubMedCrossRefGoogle Scholar
  123. Liaw, C. W., Cannon, C., Power, M. D., Kiboneta, P. K., and Rubin, L. L. (1990) Identification and cloning of two species of cadherins in bovine endothelial cells. Eur. Mol. Biol. Org. J 9: 2701–2708.Google Scholar
  124. Lindberg, F. P., Gresham, H. D., Schwarz, E., and Brown, E. J. (1993) Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane spanning domains implicated in alphavbeta3-dependent ligand binding. J. Cell Biol. 123: 1993, 485–496.PubMedCrossRefGoogle Scholar
  125. Lindberg, F. P., Lublin, D. M., Telen, M. J., et al. (1994) Rh-related antigen CD-47 is the signal-transducer integrin-associated protein. J. Biol. Chem. 269: 1567–1570.PubMedGoogle Scholar
  126. Lindberg, F. P., Bullard, D. C., Caver, T. E., Gresham, H. D., Beaudet, A. L., and Brown, E. J. (1996) Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 274: 795–798.PubMedCrossRefGoogle Scholar
  127. Lorenzon, P., Vecile, E., Nardon, E., Ferrero, E., Harlan, J. M., Tedesco, F., and Dobrina, A. (1998) Endothelial cell E-and P-selectin and vascular cell adhesion molecule-1 function as signalling receptors. J. Cell Biol. 142: 1381–1391.PubMedCrossRefGoogle Scholar
  128. Lu, H., Smith, C. W., Perrard, J., Bullard, D., Tang, L., Shappell, S. B., Entman, M. L., Beaudet, A. L., and Ballantyne, C. M. (1997) LFA-1 is sufficient in mediating neutrophil emigration in Mac-l-deficient mice. J. Clin. Invest. 99: 1340–1350.PubMedCrossRefGoogle Scholar
  129. Lub, M., Van Kooyk, Y., and Figdor, C. G. (1995) Ins and outs of LFA-1. Immunol. Today 16: 479483.Google Scholar
  130. Luscinskas, F. W., Cybulsky, M. I., Kiely, J. M., Peckins, C. S., Davis, V. M. and Gimbrone, M.AJ. (1991) Cytokine-activated human endothelial monolayers support enhanced neutro-phil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1. J. Immunol. 146: 1617–1625.PubMedGoogle Scholar
  131. Maclouf, J. (1993) Transcellular biosynthesis of arachidonic acid metabolites: from in vitro investigations to in vivo reality. Ballieres Clin. Haematol. 6: 593–608.CrossRefGoogle Scholar
  132. Maecker, H. T., Todd, S. C., and Levy, S. (1997) The tetraspanin superfamily: molecular facilitators. FASEB J. 11: 428–442.PubMedGoogle Scholar
  133. Mansfield, P. J., and Suchard, S. J. (1993) Thrombospondin promotes both chemotaxis and haptotaxis in neutrophil-like HL-60 cells. J. Immunol. 150: 1959–1970.PubMedGoogle Scholar
  134. Mansfield, P. J., and Suchard, S. J. (1994) Thrombospondin promotes chemotaxis and haptotaxis of human peripheral blood monocytes. J. Immunol. 153: 4219–4229.PubMedGoogle Scholar
  135. McEvoy, L. M., Jutila, M. A., Teao, P. S., Cooke, J. P., and Butcher, E. C. (1997) Anti-CD43 inhibits monocyte-endothelial adhesion in inflammation and atherogenesis. Blood 90: 3587–3594.PubMedGoogle Scholar
  136. Mebius, R. E., Watson, S., and Kraal, G. (1993) High endothelial venules: regulation of activity and specificity. Behring. Inst. Mitt. 92: 8–14.PubMedGoogle Scholar
  137. Meerschaert, J., and Furie, M. B. (1994) Monocytes use either CD11/CD18 or VLA-4 to migrate across human endothelium in vitro. J. Immunol. 152: 1915–1926.PubMedGoogle Scholar
  138. Meerschaert, J., and Furie, M. B. (1995) The adhesion molecules used by monocytes for migration across endothelium include CD11a/CD18, CD1lb; shCD18, and VLA-4 on monocytes and ICAM-1, VCAM-1, and other ligands on endothelium. J. Immunol. 154: 4099–4112.PubMedGoogle Scholar
  139. Mentzer, S. J., Remopld-O’Donnell, E., Crimmins, M.A.V., Bierer, B. E., Rosen, F. S., and Burakoff, S. J. (1987) Sialophorin, a surface glycoprotein defective in Wiskott-Aldrich syndrome, is involved in human T-lymphocyte proliferation. J. Exp. Med. 165: 1383–1392.PubMedCrossRefGoogle Scholar
  140. Middleton, J., Neil, S., Wintle, J., Clarke-Lewis, I., Moore, H., Lam, C., Auer, M., Hub, E., and Rot, A. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91: 385–395.Google Scholar
  141. Mikecz, K., Brennon, F. R., Kim, J. H., and Giant, T. T. (1995) Anti-CD44 treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. Nat. Med. 1: 558–563.PubMedCrossRefGoogle Scholar
  142. Miller, M. D., and Krangel, M. S. (1992) Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit. Rev. Immunol. 12: 17–46.PubMedGoogle Scholar
  143. Modur, V., Li, Y., Zimmerman, G. A., Prescott, S. M., and McIntyre, T. M. (1997) Retrograde inflammatory signaling from neutrophils to endothelial cells by soluble interleukin-6 receptor alpha. J. Clin. Invest. 100: 2752–2756.PubMedCrossRefGoogle Scholar
  144. Moll, T., Dejana, E., and Vestweber, D. (1998) In vitro degradation of endothelial catenins by a neutrophil protease. J. Cell. Biol. 140: 403–407.PubMedCrossRefGoogle Scholar
  145. Moser, R., Schleiffenbaum, B., Groscurth, P., and Fehr, J. (1989) Interleukin-1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutro-phil passage. J. Clin. Invest. 83: 444–455.PubMedCrossRefGoogle Scholar
  146. Moser, R., Fehr, J., and Bruijnzeel, P. L. (1992a) IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J. Immunol. 149: 1432–1438.PubMedGoogle Scholar
  147. Moser, R., Fehr, J., Olgiati, L., and Bruijnzeel, P. L. (1992b) Migration of primed human eosinophils across cytokine-activated endothelial cell monolayers. Blood 79: 2937–2945.PubMedGoogle Scholar
  148. Muller, W. A., and Weigl, S. A. (1992) Monocyte-selective transendothelial migration: dissection of the binding and transmigration phases by an in vitro assay. J. Exp. Med 176: 819–828.PubMedCrossRefGoogle Scholar
  149. Muller, W. A., Weigl, S. A., Deng, X., and Phillips, D. M. (1993) PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med. 178: 449–460.PubMedCrossRefGoogle Scholar
  150. Muller, W. A. (1995) The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J. Leukoc. Biot 57: 523–528.Google Scholar
  151. Newman, P. J., Berndt, M. C., Gorski, J., White, G. C., Lyman S., Paddock, C., and Muller, W. A. (1990) PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247: 1219–1222.PubMedCrossRefGoogle Scholar
  152. Nohgawa, M., Sasada, M., Maeda, A., et al. (1997) Leukotriene B4-activated human endothelial cells promote transendothelial neutrophil migration. J. Leukoc. Biol. 62: 203–209.PubMedGoogle Scholar
  153. Nourshargh, S., Larkin, S. W., Das, A., and Williams, T. J. (1995) Interleukin-l-induced leukocyte extravasation across rat mesenteric microvessels is mediated by platelet-activating factor. Blood 85: 2553–2558.PubMedGoogle Scholar
  154. Ohno, N., Ichikawa, H., Coe, L., Kvietys, P. R., Granger, D. N., and Alexander, J. S. (1997) Soluble selectins and ICAM-1 modulate neutrophil-endothelial adhesion and diapedesis in vitro. Inflammation 21: 313–324.PubMedCrossRefGoogle Scholar
  155. Oppenheimer Marks, N., Davis, L. S., and Lipsky, P. E. (1990) Human T lymphocyte adhesion to endothelial cells and transendothelial migration. Alteration of receptor use relates to the activation status of both the T cell and the endothelial cell. J Immunol. 145: 140–148.PubMedGoogle Scholar
  156. Oppenheimer Marks, N., Davis, L. S., Bogue, D. T., Ramberg, J., and Lipsky, P. E. (1991) Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J. Immunol. 147: 2913–2921.PubMedGoogle Scholar
  157. Oppenheimer Marks, N., Kavanaugh, A. F., and Lipsky, P. E. (1994) Inhibition of the transendothelial migration of human T lymphocytes by prostaglandin J. Immunol. 152: 5703–5713.PubMedGoogle Scholar
  158. Pakianathan, D. R. (1995) Extracellular matrix proteins and leukocyte function. J. Leukoc. Biol. 57: 699–702.PubMedGoogle Scholar
  159. Palade, G. E. (1988) The microvascular endothelium revisited. In Endothelial Cell Biology in Health and Disease, eds. N. Simionescu and M. Simionescu, New York: Plenum, 3–22.CrossRefGoogle Scholar
  160. Papayianni, A., Serhan, C. N., and Brady, H. R. (1996) Lipoxin A4 and B4 inhibit leukotrienestimulated interactions of human neutrophils and endothelial cells. J. Immunol. 156: 2264–2272.PubMedGoogle Scholar
  161. Parkos, C. A. (1997) Molecular events in neutrophil transepithelial migration. Bio Essays 19: 865–873.Google Scholar
  162. Pepper, M. S., Montesano, R., el Aoumari, A., Gros, D., Orci, L., and Meda, P. (1992) Coupling and connexin 43 expression in microvacsular and large vessel endothelial cells. Am. J. Physiol. 262: C1246 - C1257.PubMedGoogle Scholar
  163. Pfau, S., Leitenberg, D., Rinder, H., Smith, B. R., Pardi, R., and Bender, J. R. (1995) Lymphocyte adhesion-dependent calcium signaling in human endothelial cells. J. Cell Biol. 128: 969–978.PubMedCrossRefGoogle Scholar
  164. Piali, L., Hammel. P., Uherek, C., Bachmann, F., Gisler, R. H., Dunon, D., and Imhoff, B. A. (1995) CD-31/PECAM-1 is a ligand for alphavbeta3 integrin involved in adhesion of leucocytes to entothelium. J. Cell Biol. 130: 451–460.PubMedCrossRefGoogle Scholar
  165. Polacek, D., Lal, R., Volin, M. V., and Davies, P. F. (1993) Gap junctional communication between vascular cells. Induction of connexin43 messenger RNA in macrophage foam cells of atherosclerotic lesions. Am. J. Pathol. 142: 593–606.PubMedGoogle Scholar
  166. Qiao, R., Yan, W., Lum, H., and Malik, A. B. (1995) Arg-gly-asp peptide increase endothelial hydraulic conductivity: comparison with thrombin response. Am. J. Physiol. 269: C110-Cl17.Google Scholar
  167. Rainger, G. E., Fisher, A. C., and Nash, G. B. (1997) Endothelial-borne platelet-activating factor and interleukin-8 rapidly immobilize rolling neutrophils. Am. J. Physiol, 272: H114 - H122.PubMedGoogle Scholar
  168. Reed, K. E., Westphale, E. M., Larson, D. M., Wang, H. Z., Veenstra, R. D., and Beyer, E. C. (1993) Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein. J Clin. Invest. 91: 997–1004.PubMedCrossRefGoogle Scholar
  169. Romanic, A. M., Graesser, D., Baron, J. L., Visintin, I., Janeway, C. A. Jr., and Madri, J. A. (1997) T-cell adhesion to endothelial cells and extracellular matrix is modulated upon transendothelial cell migration. Lab. Invest. 76: 11–23.PubMedGoogle Scholar
  170. Romer, L. H., McLean, M. V., Yan, H. C., Daise, M., Sun, J., and DeLisser, H. M. (1995) IFNgamma and TNF-alpha induce redistribution of PECAM-1 (CD-31) on human endothelial cells. J. Immunol. 154: 6582–6592.PubMedGoogle Scholar
  171. Rosales, C., Gresham, H. D., and Brown, E.J. (1992) Expression of the 50-kDa integrin-associated protein on myeloid cells and erythrocytes. J. Immunol. 149: 2759–2764.PubMedGoogle Scholar
  172. Rosenkrantz, A. R., Majdic, O., Stsckl, J., Pickl, W., Stockinger, H., and Knapp, W. (1993) Induction of neutrophil homotypic adhesion via sialophorin (CD-43), a surface sialoglycoprotein restricted to haematopoietic cells. Immunol. 80: 431–438.Google Scholar
  173. Rosenstein, Y., Park, J. K., Hahn, W. C., Rosen, F. S., Bierer, B. E., and Burakoff, S. J. (1991) CD43, a molecule defective in Wiskott—Aldrich syndrome, binds ICAM-1. Nature 354: 233–235.PubMedCrossRefGoogle Scholar
  174. Rot, A. (1992) Endothelial cell binding of NAP-1/IL-8: role in neutrophil emigration. Immunol. Today 13: 291–294.PubMedCrossRefGoogle Scholar
  175. Roussel, E., and Gingras, M. C. (1997) Transendothelial migration induces rapid expression on neutrophils of granule-release VLA6 used for tissue infiltration. J. Leuk. BioL 62: 356–362.Google Scholar
  176. Saito, H., Minamiya, Y., Kitamura, M., Saito, S., Enomoto, K., Terada, K., and Ogawa, J. (1998) Endothelial myosin light chain kinase regulates neutrophil migration across human umbilical vein endothelial cell monolayer. J. Immunol. 161: 1533–1540.PubMedGoogle Scholar
  177. Salomon, D., Ayalon, O., Patel King, R., Hynes, R. O., and Geiger, B. (1992) Extrajunctional distribution of N-cadherin in cultured human endothelial cells. J. Cell Sci. 102: 7–17.PubMedGoogle Scholar
  178. Saltzman, W. M., Livingston, T. L., and Parkhurst, M. R. (1999) Antibodies to CD18 influence neutrophil migration through extracellular matrix. J. Leuk. Biol 65: 356–363.Google Scholar
  179. Sandig, M., Negrou, E., and Rogers, K. A. (1997) Changes in the distribution of LFA-1, catenins, and F-actin during transendothelial migration of monocytes in culture. J. Cell Sci. 110: 2807 2818.Google Scholar
  180. Sata, M., and Walsh, K. (1998) TNF-alpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat. Med. 4: 415–420.PubMedCrossRefGoogle Scholar
  181. Scalia, R., and Lefer, A. M. (1998) In vivo regulation of PECAM-1 activity during acute endothelial dysfunction in the rat mesenteric microvasculature. J. Leukoc. Biol. 64: 163–169.PubMedGoogle Scholar
  182. Schleimer, R. P., Sterbinsky, S. A., Kaiser, J., Bickel, C. A., Klunk, D. A., Tomioka, K., Newman, W., Luscinskas, Jr. F. W., Gimbrone, M. A., McIntyre, B. W. (1992) IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J. Immunol 148: 1086–1092.PubMedGoogle Scholar
  183. Schwartz, J. D., Monea, S., Marcus, S. G., Patel, S., Eng, K., Galloway, A. C., Mignatti, P., and Shamamian, P. (1998) Soluble factor(s) released from neutrophils activates endothelial cell matrix metalloproteinase-2. J Surg. Res. 76: 79–85.PubMedCrossRefGoogle Scholar
  184. Schwartz, M. A., Brown, E. J., and Fazeli, B. (1993) A 50-kD integrin-associated protein is required for integrin-regulated calcium entry in endothelial cells. J. Biol. Chem. 268: 19931–19934.PubMedGoogle Scholar
  185. Schonbeck, U., Brandt, E., Petersen, F., Flad, H-D., and Loppnow, H. (1995) IL-8 specifically binds to endothelial but not to smooth muscle cells. J. Immunol. 154: 2375–2383.PubMedGoogle Scholar
  186. Senior, R. M., Gresham, H. D., Griffin, G. L., Brown, E. J., and Chung, A. E. (1992) Entactin stimulates neutrophil adhesion and chemotaxis through interactions between its arg-gly-asp (RGD) domain and the leukocyte response integrin. J. Clin. Invest. 90: 2251–2257.PubMedCrossRefGoogle Scholar
  187. Shang, X. Z., and Issekutz, A. C. (1998) Contribution of CD11a/CD18, CD11b/CD18, ICAM-1 (CD54), and- 2 (CD102) to human monocyte migration through endothelium and connective tissue fibroblast barriers, Eur. J. Immunol. 28: 1970–1979.PubMedCrossRefGoogle Scholar
  188. Shang, X. Z., Lang, B. J., and Issekutz, A. C. (1998) Adhesion molecule mechanisms mediating monocyte migration through synovial fibroblast and endothelium barriers: role for CD11/ CD18, very late antigen-4 (CD49d/CD29), very late antigen-5 (CD49e/CD29), and vascular cell adhesion molecule-1 (CD106). J. Immunol. 160: 467–474.PubMedGoogle Scholar
  189. Shaw, S. (1994) Leukocyte differentiation antigen database [database]. (International workshop on leukocyte differentiation antigens: Available from S. Shaw, National Institutes of Health on disk; NIH ftp site balrog.nci.nih.gov, Bethesda.Google Scholar
  190. Simon, M. M., Kramer, M. D., Prester, M., and Gay, S. (1991) Mouse T-cell associated serine proteinase 1 degrades collagen type IV: a structural basis for the migration of lymphocytes through vascular basement membranes. Immunol. 73: 117–119.Google Scholar
  191. Sincock, P. M., Mayrhofer, G., and Ashman, L. K. (1997) Localisation of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, CD63, and alpha5betal integrin. Histochem. Cytochem. 45: 515–525.CrossRefGoogle Scholar
  192. Sleeman, J., Moll, J., Sherman, L., Dall, P., Pals, S. T., and Ponta, H. (1995) The role of CD-44 splice variants in human metastatic cancer. In Ciba Foundation Symposium 189: Cell Adhesion and Human Disease, J. Marsh and J. A. Goode, eds. Chichester: Wiley, pp. 142–151.Google Scholar
  193. Sligh, J. E., Ballantyne, C. M., Rich, S. S., Hawkins, H. K., Smith, C. W., Bradley, A., and Beaudet, A. L. (1993) Inflammatory and immune responses are impaired in ICAM-1 deficient mice. Proc. Natl. Acad. Sci USA 90: 8529–8533.PubMedCrossRefGoogle Scholar
  194. Smart, S. J., and Casale, T. B. (1994) TNF-alpha-induced transendothelial neutrophil migration is IL-8 dependent. Am. J. Physiol. 266: L238 - L245.PubMedGoogle Scholar
  195. Smith, C. W., Rothlein, R., Hughes, B. J., Mariscalco, M. M., Rudloff, H. E., Schmalstieg, F. C., and Anderson, D. C. (1988) Recognition of an endothelial determinent for CD-18 dependent human neutrophil adherence and transendothelial migration. J. Clin. Invest. 82: 1746–1756.PubMedCrossRefGoogle Scholar
  196. Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C., and Anderson, D. C. (1989) Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J. Clin. Invest. 83: 2008–2017.PubMedCrossRefGoogle Scholar
  197. Smith, C. W. (1992) Transendothelial migration. In Adhesion: Its Role in Inflammatory Disease, J. M. Harlan and D. Y. Liu, eds. New York: Freeman, pp. 83–116.Google Scholar
  198. Smith, W. B., Gamble, J. R., Clark Lewis, I., and Vadas, M. A. (1991) Interleukin-8 induces neutrophil transendothelial migration. Immunol. 72: 65–72.Google Scholar
  199. Smith, W. B., Gamble, J. R., Clark Lewis, I., and Vadas, M. A. (1993) Chemotactic desensitization of neutrophils demonstrates interleukin-8 (IL-8)-dependent and IL-8-independent mechanisms of transmigration through cytokine-activated endothelium. Immunol. 78: 491–497.Google Scholar
  200. Smith, W. B. (1994) The Mechanisms and Regulation of Neutrophil Transendothelial Migration [Ph.D. thesis]. Adelaide: University of Adelaide.Google Scholar
  201. Smith, W. B., Gamble, J. R., and Vadas, M. A. (1994) The role of granulocyte-macrophage and granulocyte colony-stimulating factors in neutrophil transendothelial migration: comparison with interleukin-8 [see comments]. Exp. Hematol. 22: 329–334.PubMedGoogle Scholar
  202. Smith, W. B., Noack, L., Khew-Goodall, Y., Isenmann, S., Vadas, M. A., and Gamble, J. R. (1996) Transforming growth factor-betal inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium. J. Immunol. 157: 360–368.PubMedGoogle Scholar
  203. Springer, T. A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314.PubMedCrossRefGoogle Scholar
  204. Stossel, T. P. (1993) On the crawling of animal cells. Science 260: 1086–1094.PubMedCrossRefGoogle Scholar
  205. Sung, K. L., Saldivar, E., and Phillips, L. (1994) Interleukin-1 betainduces differential adhesiveness on human endothelial cell surfaces. Biochem. Biophys, Res. Commun. 202: 866–872.Google Scholar
  206. Takeichi, M. (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59: 237–252.PubMedCrossRefGoogle Scholar
  207. Telo, P., Brevario, F., Huber, P., Panzeri, C., and Dejana, E. (1998) Identification of a novel cadherin (vascular endothelial cadherin 2) located at intercellular junctions in endothelial cells. J. Biol. Chem. 273: 17565–17572.PubMedCrossRefGoogle Scholar
  208. Vaporciyan, A. A., DeLisser, H. M., Yan, H. C., Mendiguren, I. I., Thom, S. R., Jones, M. L., Ward, P. A., and Albelda, S. M. (1993) Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 262: 1580–1582.PubMedCrossRefGoogle Scholar
  209. Volker, W., Schon, P., and Vischer, P. (1991) Binding and endocytosis of thrombospondin and thrombospondin fragments in endothelial cell cultures analysed by cuprolinic blue staining, colloidal gold labeling, and silver enhancement techniques. J. Histochem. Cytochem. 39: 1385–1394.PubMedCrossRefGoogle Scholar
  210. Wakelin, M. W., Sanz, M. J., Dewar, A., Albelda, S. M., Larkin, S. W., Boughton-Smith, N., Williams, T. J., and Nourshargh, S. (1996) An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mensenteric microvessels in vivo by blocking the passage through the basement membrane. J. Exp. Med 184: 229–239.PubMedCrossRefGoogle Scholar
  211. Walker, C., Rihs, S., Braun, R. K., Betz, S., and Bruijnzeel, P. L. (1993) Increased expression of CDllb and functional changes in eosinophils after migration across endothelial cell mono-layers. J. Immunol. 150: 4061–4071.PubMedGoogle Scholar
  212. Weber, C., Alon, R., Moser, B., and Springer, T. A. (1996) Sequential regulation of alpha4 betal and alpha5betal integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J. Cell, Biol. 134: 1063–1073.Google Scholar
  213. Weerasinghe, D., McHugh, K. P., Ross, F. P., Brown, E. J., Gisler, R. H., and Imhof, B. A. (1998) A role for the alphavbeta3 integrin in the transmigration of monocytes. J. Cell Biol. 142: 595–607.PubMedCrossRefGoogle Scholar
  214. Wilkinson, P. C., Shields, J. M., and Haston, W. S. (1982) Contact guidance of human neutrophil leucocytes. Exp. Cell Res. 140: 55–62.PubMedCrossRefGoogle Scholar
  215. Wilkinson, P. C., and Lackie, J. M. (1983) The influence of contact guidance on chemotaxis of human neutrophil leukocytes. Exp. Cell Res. 145: 255–264.PubMedCrossRefGoogle Scholar
  216. Yanez-Mo, M., Alfranca, A., Cabanas, C., Marazuela, M., Tejedor, R., Ursa, M. A., Ashman, L. K., de Landazuri, M. O., and Sanchez-Madrid, F. (1998) Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3betal integrin localized at endothelial lateral junctions. J. Cell Biol 141: 791–804.PubMedCrossRefGoogle Scholar
  217. Zhou, M., and Brown, E. J. (1993) Leukocyte response integrin and Integrin-associated protein act as a signal transduction unit in generation of a phagocyte respiratory burst. J. Exp. Med. 178: 1165–1174.PubMedCrossRefGoogle Scholar
  218. Ziegelstein, R. C., Corda, S., Pili, R., et al. (1994) Initial contact and subsequent adhesion of human neutrophils or monocytes to human aortic endothelial cells releases an endothelial intracellular calcium store. Circulation 90: 1899–1907.PubMedCrossRefGoogle Scholar
  219. Zigmond, S. (1998) Chemotaxis by polymorphonuclear leukocytes. J. Cell Biol. 77: 269–287.CrossRefGoogle Scholar
  220. Zocchi, M. R., Ferrero, E., Leone, B. E., et al. (1996) CD31/PECAM-1—driven chemokine-independent transmigration of human T lymphocytes. Eur. J. Immunol. 26: 759–767.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 2001

Authors and Affiliations

  • Brian Stein
  • Yeesim Khew-Goodall
  • Mathew Vadas

There are no affiliations available

Personalised recommendations