CYP1A2: The Switch-hitter

  • Danielle Roussel
  • Emily Hagn
  • Randal O. Dull


This chapter discusses the genetics, metabolic actions, substrates, inducers, and inhibitors of cytochrome P450 1A2


Cytochrome P450 CYP1A2 CYP 1A2 Cytochrome P450 Pharmacokinetic Metabolism Metabolic pathway Enzyme Induction Inhibitor Substrate Monooxygenase Liver Hydroxylation De-alkylation Steroids Retinols Melatonin Arachidonic acids Bioactivation Procarcinogens Chromosome 15 Polymorphism Allele Wild type Inducibility Ethnic variability Smoked tobacco Cigarettes Smoking Heterocyclic amines Olanzapine Clozapine Carbamazepine Omeprazole Fluvoxamine Quinolone antibiotics Norfloxacin Enoxacin Ciprofloxacin Oral contraceptives Caffeine Clozapine Olanzapine Tacrine Theophylline Clomipramine Duloxetine Imipramine Naproxen Ondansetron Propafenone R-warfarin Verapamil Duloxetine 


  1. 1.
    Wang B, Zhou SF. Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16(31):4066–218.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhou SF, et al. Insights into the structure, function, and regulation of human cytochrome P450 1A2. Curr Drug Metab. 2009;10(7):713–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhou SF, et al. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J. 2009;11(3):481–94.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Skarke C, et al. Rapid genotyping for relevant CYP1A2 alleles by pyrosequencing. Eur J Clin Pharmacol. 2005;61(12):887–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Schweikl H, et al. Expression of CYP1A1 and CYP1A2 genes in human liver. Pharmacogenetics. 1993;3(5):239–49.PubMedCrossRefGoogle Scholar
  6. 6.
    Harris R, Jang G, Tsunoda S. Dietary effects on drug metabolism and tranport. Clin Pharmacokinet. 2003;42(13):1071–88.PubMedCrossRefGoogle Scholar
  7. 7.
    Zevin S, Benowitz NL. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999;36(6):425–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Parikh A, Josephy PD, Guengerich FP. Selection and characterization of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry. 1999;38(17):5283–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Desai HD, Seabolt J, Jann MW. Smoking in patients receiving psychotropic medications: a pharmacokinetic perspective. CNS Drugs. 2001;15(6):469–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Hoffmann D, Djordjevic M, Hoffmann I. The changing cigarette. Prev Med. 1997;26(4):427–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Callaghan JT, et al. Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999;37(3):177–93.PubMedCrossRefGoogle Scholar
  12. 12.
    Kroon LA. Drug interactions with smoking. Am J Health Syst Pharm. 2007;64(18):1917–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Faber M, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol. 2005;97:125–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Lobo ED, et al. In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin Pharmacokinet. 2008;47(3):191–202.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Pain ManagementUniversity of Utah School of MedicineSalt Lake CityUSA
  3. 3.Department of AnesthesiologyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations