Skip to main content

On Representation of an Integer by X 2 + Y 2 + Z 2 and the Modular Equations of Degree 3 and 5

  • Chapter
  • First Online:
Quadratic and Higher Degree Forms

Part of the book series: Developments in Mathematics ((DEVM,volume 31))

Abstract

I discuss a variety of results involving s(n), the number of representations of n as a sum of three squares. One of my objectives is to reveal numerous interesting connections between the properties of this function and certain modular equations of degree 3 and 5. In particular, I show that

$$\displaystyle{ s(25n) = \left (6 -\left (-n\vert 5\right)\right)s(n) - 5s\left (\frac{n} {25}\right) }$$

follows easily from the well known Ramanujan modular equation of degree 5. Moreover, I establish new relations between s(n) and h(n), g(n), the number of representations of n by the ternary quadratic forms

$$\displaystyle{2{x}^{2} + 2{y}^{2} + 2{z}^{2} - yz + zx + xy,\quad {x}^{2} + {y}^{2} + 3{z}^{2} + xy,}$$

respectively. Finally, I propose a remarkable new identity for s(p 2 n)−p s(n) with p being an odd prime. This identity makes nontrivial use of the ternary quadratic forms with discriminants p 2, 16p 2.

There are always flowers for those who want to see them

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.T. Bateman, On the representations of a number as the sum of three squares, Trans. Amer. Math. Soc. 71 (1951), no. 1, 70–101.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Berkovich, W.C. Jagy, Ternary Quadratic Forms, Modular Equations and Certain Positivity Conjectures, in: The Legacy of Alladi Ramakrishnan in the mathematical sciences, (K. Alladi, J. R. Klauder, and C. R. Rao, Eds.), 211–241, Springer, NY, 2010.

    Google Scholar 

  3. A. Berkovich, W.C. Jagy, On representation of an integer as the sum of three squares and the ternary quadratic forms with the discriminants p 2 , 16p 2, J. of Number Theory 132 (2012), no. 1, 258–274.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Berkovich, H. Yesilyurt, Ramanujan’s Identities and Representation of Integers by Certain Binary and Quaternary Quadratic Forms, Ramanujan J. 20 (2009), no. 3, 375–408.

    Article  MathSciNet  MATH  Google Scholar 

  5. B.C. Berndt, Ramanujan’s Notebooks, Part III, Springer, New York, 1991.

    Book  MATH  Google Scholar 

  6. B.C. Berndt, Number Theory in the Spirit of Ramanujan, Student Mathematical Library, 34 AMS, Providence, RI, 2006.

    Google Scholar 

  7. B.C. Berndt, S. Bhargava, F.G. Garvan, Ramanujan’s theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4163–4244.

    MathSciNet  MATH  Google Scholar 

  8. J.M. Borwein, P.B. Borwein, A cubic counterpart of Jacobi’s identity and AGM, Trans. Amer. Math. Soc. 323 (1991), no. 2, 691–701.

    MathSciNet  MATH  Google Scholar 

  9. J.M. Borwein, P.B. Borwein, F.G. Garvan, Some cubic modular identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), no. 1, 35–47.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Cooper, M.D. Hirschhorn, Results of Hurwitz type for three squares, Discrete Math. 274 (2004), 9–24.

    Article  MathSciNet  MATH  Google Scholar 

  11. L.E. Dickson, Modern Elementary Theory of Numbers, The University of Chicago Press, 1939.

    Google Scholar 

  12. F.G. Garvan, D. Kim, D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), no. 1, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  13. M.D. Hirschhorn, F.G. Garvan, J.M. Borwein, Cubic analogues of the Jacobian theta function θ(z,q), Canad. J. Math. 45 (1993), no. 4, 673–694.

    Article  MathSciNet  MATH  Google Scholar 

  14. M.D. Hirschhorn, J.A. Sellers, On representation of a number as a sum of three squares, Discrete Math. 199 (1999), 85–101.

    Article  MathSciNet  MATH  Google Scholar 

  15. W.C. Jagy, Private communication.

    Google Scholar 

  16. W.C. Jagy, I. Kaplansky, A. Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), 332–341.

    Article  MathSciNet  MATH  Google Scholar 

  17. B.W. Jones, The Arithmetic Theory of Quadratic Forms, Mathematical Association of America, 1950.

    Google Scholar 

  18. J.L. Lehman, Levels of positive definite ternary quadratic forms, Math. of Comput. 58 (1992) no. 197, 399–417.

    Google Scholar 

  19. L.C. Shen, On the modular equations of degree 3, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1101–1114.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Bruce Berndt, Shaun Cooper, Will Jagy, Rainer Schulze-Pillot for their kind interest and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Berkovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berkovich, A. (2013). On Representation of an Integer by X 2 + Y 2 + Z 2 and the Modular Equations of Degree 3 and 5. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P. (eds) Quadratic and Higher Degree Forms. Developments in Mathematics, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7488-3_2

Download citation

Publish with us

Policies and ethics