Dynamic Visualisations and Motor Skills

  • Juan Cristobal Castro-Alonso
  • Paul Ayres
  • Fred Paas
Chapter

Abstract

Due to their popularity, dynamic visualisations (e.g. video, animation) seem attractive educational resources. However, in the design of any instructional material, not only must the appealing factor be acknowledged, but also the cognitive limitations. To consider the limitations of human cognitive architecture when designing instructional resources has been the leitmotif of cognitive load theory (CLT). CLT research has shown that the transitory nature of dynamic visualisations imposes such a high working memory load that, in many cases, these depictions are no more effective for learning than static visualisations. However, dynamic visualisations have been shown to be superior to static visualisations when the depiction involves human motor skills, a special case which might be explained by the mirror neuron system (MNS) aiding working memory to cope with transitory information.

We will begin this chapter by presenting instructional properties of dynamic visualisations. Next, we will discuss the main differences between dynamic and static visualisations and how each can affect learning. Then, we will describe briefly CLT to give a more detailed account on instructional strategies to improve learning from dynamic visualisations. Next, we will summarise video modelling of motor skills. To end this chapter, we will focus on the MNS and how it aids humans to learn motor skills through observation.

Keywords

Surfactant Posit Editing Flushing Metaphor 

Notes

Acknowledgements

This research was supported by an Australian Research Council grant (DP1095685) to the second and third authors.

References

  1. 1.
    Ambadar Z, Schooler JW, Cohn JF (2005) Deciphering the enigmatic face: The importance of facial dynamics in interpreting subtle facial expressions. Psychological Science 16 (5): 403–410CrossRefGoogle Scholar
  2. 2.
    Arguel A, Jamet E (2009) Using video and static pictures to improve learning of procedural contents. Computers in Human Behavior 25 (2):354–359. doi:10.1016/j.chb.2008.12.014CrossRefGoogle Scholar
  3. 3.
    Ayres P, Paas F (2007) Can the cognitive load approach make instructional animations more effective? Applied Cognitive Psychology 21 (6):811–820. doi:10.1002/acp.1351CrossRefGoogle Scholar
  4. 4.
    Ayres P, Paas F (2007) Making instructional animations more effective: A cognitive load approach. Applied Cognitive Psychology 21 (6):695–700. doi:10.1002/acp.1343CrossRefGoogle Scholar
  5. 5.
    Ayres P, Marcus N, Chan C, Qian N (2009) Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Computers in Human Behavior 25 (2):348–353. doi:10.1016/j.chb.2008.12.013CrossRefGoogle Scholar
  6. 6.
    Baddeley A (1992) Working memory. Science 255 (5044):556–559CrossRefGoogle Scholar
  7. 7.
    Baddeley A (2000) The episodic buffer: A new component of working memory? Trends in Cognitive Sciences 4 (11):417–423. doi:10.1016/S1364-6613(00)01538-2CrossRefGoogle Scholar
  8. 8.
    Baggett P (1987) Learning a procedure from multimedia instructions: The effects of film and practice. Applied Cognitive Psychology 1 (3):183–195CrossRefGoogle Scholar
  9. 9.
    Barsalou LW (2008) Grounded cognition. Annual Review of Psychology 59 (1):617–645. doi:10.1146/annurev.psych.59.103006.093639CrossRefGoogle Scholar
  10. 10.
    Barsalou LW (2010) Grounded cognition: Past, present, and future. Topics in Cognitive Science 2 (4):716–724. doi:10.1111/j.1756-8765.2010.01115.xCrossRefGoogle Scholar
  11. 11.
    Bassili JN (1978) Facial motion in the perception of faces and of emotional expression. Journal of Experimental Psychology: Human Perception and Performance 4 (3):373–379. doi:10.1037/0096-1523.4.3.373CrossRefGoogle Scholar
  12. 12.
    Bétrancourt M (2005) The animation and interactivity principles in multimedia learning. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 287–296CrossRefGoogle Scholar
  13. 13.
    Bétrancourt M, Chassot A (2008) Making sense of animation: How do children explore multimedia instruction? In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 141–164Google Scholar
  14. 14.
    Blandin Y, Lhuisset L, Proteau L (1999) Cognitive processes underlying observational learning of motor skills. The Quarterly Journal of Experimental Psychology Section A 52 (4):957–979. doi:10.1080/713755856Google Scholar
  15. 15.
    Boucheix J-M (2008) Young learners' control of technical animations. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 208–234Google Scholar
  16. 16.
    Boucheix J-M, Lowe RK (2010) An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction 20 (2):123–135. doi:10.1016/j.learninstruc.2009.02.015CrossRefGoogle Scholar
  17. 17.
    Brünken R, Steinbacher S, Plass JL, Leutner D (2002) Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental Psychology 49 (2):109–119. doi:10.1027//1618-3169.49.2.109CrossRefGoogle Scholar
  18. 18.
    Carroll WR, Bandura A (1982) The role of visual monitoring in observational learning of action patterns: Making the unobservable observable. Journal of Motor Behavior 14 (2): 153–167Google Scholar
  19. 19.
    Chandler P, Sweller J (1996) Cognitive load while learning to use a computer program. Applied Cognitive Psychology 10 (2):151–170CrossRefGoogle Scholar
  20. 20.
    Clark J, Paivio A (1991) Dual coding theory and education. Educational Psychology Review 3 (3):149–210. doi:10.1007/bf01320076CrossRefGoogle Scholar
  21. 21.
    Clark RC (2005) Multimedia learning in e-courses. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 589–616CrossRefGoogle Scholar
  22. 22.
    Cowan N (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences 24 (01):87–114. doi:10.1017/S0140525X01003922CrossRefGoogle Scholar
  23. 23.
    Cross ES, Hamilton AFdC, Grafton ST (2006) Building a motor simulation de novo: Observation of dance by dancers. NeuroImage 31 (3):1257–1267. doi:10.1016/j.neuroimage.2006.01.033Google Scholar
  24. 24.
    de Koning BB, Tabbers HK (2011) Facilitating understanding of movements in dynamic visualizations: An embodied perspective. Educational Psychology Review 23 (4):501–521. doi:10.1007/s10648-011-9173-8CrossRefGoogle Scholar
  25. 25.
    de Koning BB, Tabbers HK, Rikers RMJP, Paas F (2009) Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review 21 (2):113–140. doi:10.1007/s10648-009-9098-7CrossRefGoogle Scholar
  26. 26.
    de Koning BB, Tabbers HK, Rikers RMJP, Paas F (2010) Learning by generating vs. receiving instructional explanations: Two approaches to enhance attention cueing in animations. Computers & Education 55 (2):681–691. doi:10.1016/j.compedu.2010.02.027CrossRefGoogle Scholar
  27. 27.
    di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: A neurophysiological study. Experimental Brain Research 91 (1):176–180. doi:10.1007/bf00230027CrossRefGoogle Scholar
  28. 28.
    Doody SG, Bird AM, Ross D (1985) The effect of auditory and visual models on acquisition of a timing task. Human Movement Science 4 (4):271–281. doi:10.1016/0167-9457(85)90014-4CrossRefGoogle Scholar
  29. 29.
    Dowrick PW (1991) Analyzing and documenting. In: Dowrick PW (ed) Practical guide to using video in the behavioral sciences. Wiley Interscience, New York, NY, pp 30–48Google Scholar
  30. 30.
    Dowrick PW (1991) Instructing and informing. In: Dowrick PW (ed) Practical guide to using video in the behavioral sciences. Wiley Interscience, New York, NY, pp 49–63Google Scholar
  31. 31.
    Dowrick PW (1991) Feedback and self-confrontation. In: Dowrick PW (ed) Practical guide to using video in the behavioral sciences. Wiley Interscience, New York, NY, pp 92–108Google Scholar
  32. 32.
    Dowrick PW, Hood M (1981) Comparison of self-modeling and small cash incentives in a sheltered workshop. Journal of Applied Psychology 66 (3):394–397CrossRefGoogle Scholar
  33. 33.
    Dowrick PW, Jesdale DC (1991) Modeling. In: Dowrick PW (ed) Practical guide to using video in the behavioral sciences. Wiley Interscience, New York, NY, pp 64–76Google Scholar
  34. 34.
    Geary DC (2002) Principles of evolutionary educational psychology. Learning and Individual Differences 12 (4):317–345. doi:10.1016/s1041-6080(02)00046-8CrossRefGoogle Scholar
  35. 35.
    Gray JT, Neisser U, Shapiro BA, Kouns S (1991) Observational learning of ballet sequences: The role of kinematic information. Ecological Psychology 3 (2):121–134. doi:10.1207/s15326969eco0302_4CrossRefGoogle Scholar
  36. 36.
    Hall EG, Erffmeyer ES (1983) The effect of visuo-motor behavior rehearsal with videotaped modeling on free throw accuracy of intercollegiate female basketball players. Journal of Sport Psychology 5 (3):343–346Google Scholar
  37. 37.
    Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: A neuromagnetic study. Proceedings of the National Academy of Sciences of the United States of America 95 (25):15061–15065CrossRefGoogle Scholar
  38. 38.
    Hasler BS, Kersten B, Sweller J (2007) Learner control, cognitive load and instructional animation. Applied Cognitive Psychology 21 (6):713–729. doi:10.1002/acp.1345CrossRefGoogle Scholar
  39. 39.
    Hegarty M (1992) Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition 18 (5):1084–1102. doi:10.1037/0278-7393.18.5.1084CrossRefGoogle Scholar
  40. 40.
    Hegarty M (2005) Multimedia learning about physical systems. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 447–465CrossRefGoogle Scholar
  41. 41.
    Hegarty M, Kriz S (2008) Effects of knowledge and spatial ability on learning from animation. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 3–29Google Scholar
  42. 42.
    Höffler TN (2010) Spatial ability: Its influence on learning with visualizations—a meta-analytic review. Educational Psychology Review 22 (3):245–269. doi:10.1007/s10648-010-9126-7CrossRefGoogle Scholar
  43. 43.
    Höffler TN, Leutner D (2007) Instructional animation versus static pictures: A meta-analysis. Learning and Instruction 17 (6):722–738. doi:10.1016/j.learninstruc.2007.09.013CrossRefGoogle Scholar
  44. 44.
    Höffler TN, Schwartz RN (2011) Effects of pacing and cognitive style across dynamic and non-dynamic representations. Computers & Education 57 (2):1716–1726. doi:10.1016/j.compedu.2011.03.012CrossRefGoogle Scholar
  45. 45.
    Huk T, Steinke M, Floto C (2010) The educational value of visual cues and 3D-representational format in a computer animation under restricted and realistic conditions. Instructional Science 38 (5):455–469. doi:10.1007/s11251-009-9116-7CrossRefGoogle Scholar
  46. 46.
    Jamet E, Gavota M, Quaireau C (2008) Attention guiding in multimedia learning. Learning and Instruction 18 (2):135–145. doi:10.1016/j.learninstruc.2007.01.011CrossRefGoogle Scholar
  47. 47.
    Kalyuga S (2009) Managing cognitive load in adaptive multimedia learning. IGI Global, Hershey, PAGoogle Scholar
  48. 48.
    Kalyuga S, Chandler P, Sweller J (1999) Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology 13 (4):351–371CrossRefGoogle Scholar
  49. 49.
    Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Current Biology 13 (6):522–525. doi:10.1016/s0960-9822(03)00165-9CrossRefGoogle Scholar
  50. 50.
    Kirschner PA, Sweller J, Clark RE (2006) Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist 41 (2):75–86. doi:10.1207/s15326985ep4102_1CrossRefGoogle Scholar
  51. 51.
    Kitsantas A, Zimmerman BJ, Cleary T (2000) The role of observation and emulation in the development of athletic self-regulation. Journal of Educational Psychology 92 (4):811–817. doi:10.1037/0022-0663.92.4.811CrossRefGoogle Scholar
  52. 52.
    Knippels M-CPJ, Severiens SE, Klop T (2009) Education through fiction: Acquiring opinion-forming skills in the context of genomics. International Journal of Science Education 31 (15):2057–2083. doi: 10.1080/09500690802345888 CrossRefGoogle Scholar
  53. 53.
    Koroghlanian C, Klein JD (2004) The effect of audio and animation in multimedia instruction. Journal of Educational Multimedia and Hypermedia 13 (1):23–46Google Scholar
  54. 54.
    Kozma R, Russell J (2005) Multimedia learning of chemistry. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 409–428CrossRefGoogle Scholar
  55. 55.
    Lin L, Atkinson RK (2011) Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education 56 (3):650–658. doi:10.1016/j.compedu.2010.10.007CrossRefGoogle Scholar
  56. 56.
    Linek SB, Gerjets P, Scheiter K (2010) The speaker/gender effect: Does the speaker’s gender matter when presenting auditory text in multimedia messages? Instructional Science 38 (5):503–521. doi:10.1007/s11251-009-9115-8CrossRefGoogle Scholar
  57. 57.
    Longcamp M, Tanskanen T, Hari R (2006) The imprint of action: Motor cortex involvement in visual perception of handwritten letters. NeuroImage 33 (2):681–688. doi:10.1016/j.neuroimage.2006.06.042CrossRefGoogle Scholar
  58. 58.
    Low R, Sweller J (2005) The modality principle in multimedia learning. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 147–158CrossRefGoogle Scholar
  59. 59.
    Lowe RK, Schnotz W, Rasch T (2011) Aligning affordances of graphics with learning task requirements. Applied Cognitive Psychology 25 (3):452–459. doi:10.1002/acp.1712CrossRefGoogle Scholar
  60. 60.
    Lusk DL, Evans AD, Jeffrey TR, Palmer KR, Wikstrom CS, Doolittle PE (2009) Multimedia learning and individual differences: Mediating the effects of working memory capacity with segmentation. British Journal of Educational Technology 40 (4):636–651CrossRefGoogle Scholar
  61. 61.
    Mayer RE (2004) Should there be a three-strikes rule against pure discovery learning? American Psychologist 59 (1):14–19. doi:10.1037/0003-066x.59.1.14CrossRefGoogle Scholar
  62. 62.
    Mayer RE (2005) Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 183–200CrossRefGoogle Scholar
  63. 63.
    Mayer RE (2005) Principles of multimedia learning based on social cues: Personalization, voice, and image principles. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 201–212CrossRefGoogle Scholar
  64. 64.
    Mayer RE (2005) Principles for managing essential processing in multimedia learning: Segmenting, pretraining, and modality principles. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 169–182CrossRefGoogle Scholar
  65. 65.
    Mayer RE (2001) Multimedia learning. Cambridge University Press, New York, NYCrossRefGoogle Scholar
  66. 66.
    Mayer RE (2008) Research-based principles for learning with animation. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 30–48Google Scholar
  67. 67.
    Mayer RE, Chandler P (2001) When learning is just a click away: Does simple user interaction foster deeper understanding of multimedia messages? Journal of Educational Psychology 93 (2):390–397. doi:10.1037/0022-0663.93.2.390CrossRefGoogle Scholar
  68. 68.
    Mayer RE, Hegarty M, Mayer S, Campbell J (2005) When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Applied 11 (4):256–265. doi:10.1037/1076-898x.11.4.256CrossRefGoogle Scholar
  69. 69.
    Mecklinger A, Gruenewald C, Besson M, Magnié M-N, Von Cramon DY (2002) Separable neuronal circuitries for manipulable and non-manipulable objects in working memory. Cerebral Cortex 12 (11):1115–1123. doi:10.1093/cercor/12.11.1115CrossRefGoogle Scholar
  70. 70.
    Meichenbaum DH (1971) Examination of model characteristics in reducing avoidance behavior. Journal of Personality and Social Psychology 17 (3):298–307CrossRefGoogle Scholar
  71. 71.
    Miller GA (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review 63 (2):81–97. doi:10.1037/h0043158CrossRefGoogle Scholar
  72. 72.
    Moreno R (2007) Optimising learning from animations by minimising cognitive load: Cognitive and affective consequences of signalling and segmentation methods. Applied Cognitive Psychology 21 (6):765–781CrossRefGoogle Scholar
  73. 73.
    Moreno R (2008) Animated pedagogical agents: How do they help students construct knowledge from interactive multimedia games? In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 183–207Google Scholar
  74. 74.
    Moreno R, Mayer R (2007) Interactive multimodal learning environments. Educational Psychology Review 19 (3):309–326. doi:10.1007/s10648-007-9047-2CrossRefGoogle Scholar
  75. 75.
    Moreno R, Mayer RE, Spires HA, Lester JC (2001) The case for social agency in computer-based teaching: Do students learn more deeply when they interact with animated pedagogical agents? Cognition and Instruction 19 (2):177–213CrossRefGoogle Scholar
  76. 76.
    Paas F, Sweller J (2012) An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review 24 (1):27–45. doi:10.1007/s10648-011-9179-2CrossRefGoogle Scholar
  77. 77.
    Paas F, Tuovinen JE, Tabbers H, Van Gerven PWM (2003) Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist 38 (1):63–71CrossRefGoogle Scholar
  78. 78.
    Park O-C, Hopkins R (1992) Instructional conditions for using dynamic visual displays: A review. Instructional Science 21 (6):427–449. doi:10.1007/BF00118557CrossRefGoogle Scholar
  79. 79.
    Peterson LR, Peterson MJ (1959) Short-term retention of individual verbal items. Journal of Experimental Psychology 58 (3):193–198. doi:10.1037/h0049234CrossRefGoogle Scholar
  80. 80.
    Pramling N (2009) The role of metaphor in Darwin and the implications for teaching evolution. Science Education 93 (3):535–547. doi:10.1002/sce.20319CrossRefGoogle Scholar
  81. 81.
    Rebetez C, Bétrancourt M, Sangin M, Dillenbourg P (2010) Learning from animation enabled by collaboration. Instructional Science 38 (5):471–485. doi:10.1007/s11251-009-9117-6CrossRefGoogle Scholar
  82. 82.
    Rieber LP (1990) Using computer animated graphics in science instruction with children. Journal of Educational Psychology 82 (1):135–140CrossRefGoogle Scholar
  83. 83.
    Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annual Review of Neuroscience 27:169–192. doi:10.1146/annurev.neuro.27.070203.144230CrossRefGoogle Scholar
  84. 84.
    Roncarrelli R (1989) The computer animation dictionary: Including related terms used in computer graphics, film and video, production, and desktop publishing. Springer-Verlag, New York, NYGoogle Scholar
  85. 85.
    Ross D, Bird AM, Doody SG, Zoeller M (1985) Effects of modeling and videotape feedback with knowledge of results on motor performance. Human Movement Science 4 (2):149–157. doi:10.1016/0167-9457(85)90008-9CrossRefGoogle Scholar
  86. 86.
    Rummer R, Schweppe J, Fürstenberg A, Seufert T, Brünken R (2010) Working memory interference during processing texts and pictures: Implications for the explanation of the modality effect. Applied Cognitive Psychology 24 (2):164–176CrossRefGoogle Scholar
  87. 87.
    Scheiter K, Gerjets P (2007) Learner control in hypermedia environments. Educational Psychology Review 19 (3):285–307. doi:10.1007/s10648-007-9046-3CrossRefGoogle Scholar
  88. 88.
    Schnotz W, Lowe RK (2008) A unified view of learning from animated and static graphics. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 304–356Google Scholar
  89. 89.
    Schnotz W, Rasch T (2008) Functions of animations in comprehension and learning. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 92–113Google Scholar
  90. 90.
    Schunk DH, Zimmerman BJ (1997) Social origins of self-regulatory competence. Educational Psychologist 32 (4):195–208. doi:10.1207/s15326985ep3204_1CrossRefGoogle Scholar
  91. 91.
    Schwan S, Riempp R (2004) The cognitive benefits of interactive videos: Learning to tie nautical knots. Learning and Instruction 14 (3):293–305. doi:10.1016/j.learninstruc.2004.06.005CrossRefGoogle Scholar
  92. 92.
    Sharp G (1981) Acquisition of lecturing skills by university teaching assistants: Some effects of interest, topic relevance, and viewing a model videotape. American Educational Research Journal 18 (4):491–502CrossRefGoogle Scholar
  93. 93.
    Spangenberg RW (1973) The motion variable in procedural learning. Educational Technology Research and Development 21 (4):419–436Google Scholar
  94. 94.
    Spanjers IAE, van Gog T, van Merriënboer JJG (2010) A theoretical analysis of how segmentation of dynamic visualizations optimizes students' learning. Educational Psychology Review 22 (4):411–423. doi:10.1007/s10648-010-9135-6CrossRefGoogle Scholar
  95. 95.
    Sweller J (2008) Instructional implications of David C. Geary's Evolutionary Educational Psychology. Educational Psychologist 43 (4):214–216. doi: 10.1080/00461520802392208 CrossRefGoogle Scholar
  96. 96.
    Sweller J (2009) Cognitive bases of human creativity. Educational Psychology Review 21 (1):11–19CrossRefGoogle Scholar
  97. 97.
    Sweller J (2010) Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review 22 (2):123–138. doi:10.1007/s10648-010-9128-5CrossRefGoogle Scholar
  98. 98.
    Sweller J, van Merrienboer JJG, Paas F (1998) Cognitive architecture and instructional design. Educational Psychology Review 10 (3):251–296. doi:10.1023/A:1022193728205CrossRefGoogle Scholar
  99. 99.
    Sweller J, Ayres P, Kalyuga S (2011) Cognitive load theory. Explorations in the learning sciences, instructional systems and performance technologies. Springer, New York, NYCrossRefGoogle Scholar
  100. 100.
    Tai YF, Scherfler C, Brooks DJ, Sawamoto N, Castiello U (2004) The human premotor cortex is 'mirror' only for biological actions. Current Biology 14 (2):117–120. doi:10.1016/j.cub.2004.01.005CrossRefGoogle Scholar
  101. 101.
    Tettamanti M, Buccino G, Saccuman MC, Gallese V, Danna M, Scifo P, Fazio F, Rizzolatti G, Cappa SF, Perani D (2005) Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience 17 (2):273–281CrossRefGoogle Scholar
  102. 102.
    Tosi V (1993) El lenguaje de las imágenes en movimiento (How to make scientific audio-visuals for research) (trans: Broissin M). 2nd edn. Grijalbo, México, MéxicoGoogle Scholar
  103. 103.
    Tversky B, Morrison JB, Betrancourt M (2002) Animation: Can it facilitate? International Journal of Human-Computer Studies 57 (4):247–262. doi:10.1006/ijhc.2002.1017CrossRefGoogle Scholar
  104. 104.
    Tversky B, Heiser J, Mackenzie R, Lozano S, Morrison JB (2008) Enriching animations. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, pp 263–285Google Scholar
  105. 105.
    Valenti SS, Costall A (1997) Visual perception of lifted weight from kinematic and static (photographic) displays. Journal of Experimental Psychology: Human Perception and Performance 23 (1):181–198CrossRefGoogle Scholar
  106. 106.
    van Gog T, Paas F, Marcus N, Ayres P, Sweller J (2009) The mirror neuron system and observational learning: Implications for the effectiveness of dynamic visualizations. Educational Psychology Review 21 (1):21–30. doi:10.1007/s10648-008-9094-3CrossRefGoogle Scholar
  107. 107.
    Watson G, Butterfield J, Curran R, Craig C (2010) Do dynamic work instructions provide an advantage over static instructions in a small scale assembly task? Learning and Instruction 20 (1):84–93. doi:10.1016/j.learninstruc.2009.05.001CrossRefGoogle Scholar
  108. 108.
    Wiley J, Ash IK (2005) Multimedia learning of history. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 375–391CrossRefGoogle Scholar
  109. 109.
    Williams R (2001) The animator's survival kit. Faber & Faber, New York, NYGoogle Scholar
  110. 110.
    Wong A, Marcus N, Ayres P, Smith L, Cooper GA, Paas F, Sweller J (2009) Instructional animations can be superior to statics when learning human motor skills. Computers in Human Behavior 25 (2):339–347. doi:10.1016/j.chb.2008.12.012CrossRefGoogle Scholar
  111. 111.
    Wouters P, Tabbers H, Paas F (2007) Interactivity in video-based models. Educational Psychology Review 19 (3):327–342. doi:10.1007/s10648-007-9045-4CrossRefGoogle Scholar
  112. 112.
    Yang E-m, Andre T, Greenbowe TJ, Tibell L (2003) Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education 25 (3):329–349. doi: 10.1080/09500690210126784 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Juan Cristobal Castro-Alonso
    • 1
  • Paul Ayres
    • 1
  • Fred Paas
    • 2
  1. 1.School of EducationUniversity of New South WalesSydneyAustralia
  2. 2.Institute of PsychologyErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations