Gryphon: A ‘Little’ Domain-Specific Programming Language for Diffusion MRI Visualizations

  • Jian Chen
  • Haipeng Cai
  • Alexander P. Auchus
  • David H. Laidlaw


We present Gryphon, a ‘little’ domain-specific programming language (DSL) for visualizing diffusion magnetic resonance imaging (DMRI). A key contribution is its compositional approach to customizing visualizations for evolving analytical tasks. The language is designed for non-programmer, here brain scientists for exploratory studies. The semantics of Gryphon includes a simple set of keywords derived from brain scientists vocabulary while performing imaging tasks of mapping data to graphic marks such as color, shape, value, and size. A pilot study with two neuroscientists suggested that Gryphon was easy to learn, though some additional functions and interface components are needed to empower brain scientists.


Fiber Bundle Fiber Tract Language Design Diffusion Magnetic Resonance Imaging Brain Scientist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the participants for their time and effort, Drs. Juebin Huang, Stephen Correia, and Judy James for their help on task analyses. We also thank Katrina Avery for her editorial support. This work was supported in part by NSF IIS-1018769, IIS-1016623, IIS-1017921, OCI-0923393, EPS-0903234, DBI-1062057, and CCF-1785542, and NIH (RO1-EB004155-01A1).


  1. 1.
    Akers, D.: CINCH: A cooperatively designed marking interface for 3d pathway selection. In: Proceedings of the 19th annual ACM symposium on User interface software and technology, pp. 33–42. ACM (2006)Google Scholar
  2. 2.
    Bentley, J.: Programming pearls: little languages. pp. 711–721. ACM (1986)Google Scholar
  3. 3.
    Bertin, J.: Semiology of graphics: diagrams, networks, maps (1983)Google Scholar
  4. 4.
    Bostock, M., Heer, J.: Protovis: A graphical toolkit for visualization. IEEE Transactions on Visualization and Computer Graphics 15(6), 1121–1128 (2009)CrossRefGoogle Scholar
  5. 5.
    Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Transactions on Visualization and Computer Graphics 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  6. 6.
    Chiw, C., Kindlmann, G., Reppy, J., Samuels, L., Seltzer, N.: Diderot: a parallel dsl for image analysis and visualization. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 111–120. ACM (2012)Google Scholar
  7. 7.
    Correia, S., Lee, S., Voorn, T., Tate, D., Paul, R., Zhang, S., Salloway, S., Malloy, P., Laidlaw, D.: Quantitative tractography metrics of white matter integrity in diffusion-tensor mri. Neuroimage 42(2), 568 (2008)CrossRefGoogle Scholar
  8. 8.
    Demiralp, C., Hughes, J.F., Laidlaw, D.H.: Coloring 3D line fields using Boy’s real projective plane immersion. IEEE Trans. on Visualization and Computer Graphics (Proc. Visualization ’09) 15(6), 1457–1463 (2009)Google Scholar
  9. 9.
    Demiralp, Ç., Zhang, S., Tate, D., Correia, S., Laidlaw, D.: Connectivity-aware sectional visualization of 3d dti volumes using perceptual flat-torus coloring and edge rendering. Eurographics (2006)Google Scholar
  10. 10.
    Elmqvist, N., Tsigas, P.: A taxonomy of 3d occlusion management for visualization. IEEE Transactions on Visualization and Computer Graphics 14(5), 1095–1109 (2008)CrossRefGoogle Scholar
  11. 11.
    Everts, M., Bekker, H., Roerdink, J., Isenberg, T.: Depth-dependent halos: Illustrative rendering of dense line data. IEEE Transactions on Visualization and Computer Graphics 15(6), 1299–1306 (2009)CrossRefGoogle Scholar
  12. 12.
    Forsberg, A., Chen, J., Laidlaw, D.: Comparing 3d vector field visualization methods: A user study. IEEE Transactions on Visualization and Computer Graphics 15(6), 1219–1226 (2009)CrossRefGoogle Scholar
  13. 13.
    Goldau, M., Wiebel, A., Hlawitschka, M., Scheuermann, G., Tittgemeyer, M.: Visualizing DTI parameters on boundary surfaces of white matter fiber bundles. In: Signal Processing, Pattern Recognition, and Applications/722: Computer Graphics and Imaging. ACTA Press (2011)Google Scholar
  14. 14.
    Harrower, M., Brewer, C.: an online tool for selecting colour schemes for maps. The Cartographic Journal 40(1), 27–37 (2003)Google Scholar
  15. 15.
    Jiang, H., Van Zijl, P., Kim, J., Pearlson, G., Mori, S.: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Computer Methods and Programs in Biomedicine 81(2), 106–116 (2006)CrossRefGoogle Scholar
  16. 16.
    Johnson, C., Parker, S., Weinstein, D.: Large-scale computational science applications using the scirun problem solving environment. Citeseer (2000)Google Scholar
  17. 17.
    Koenig, M., Spindler, W., Rexilius, J., Jomier, J., Link, F., Peitgen, H.: Embedding vtk and itk into a visual programming and rapid prototyping platform. In: Proceedings of SPIE, vol. 6141, p. 61412O (2006)CrossRefGoogle Scholar
  18. 18.
    Leemans, A., Jeurissen, B., Sijbers, J., Jones, D.: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine, vol. 17 (2009)Google Scholar
  19. 19.
    Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Transactions on Graphics (TOG) 5(2), 110–141 (1986)Google Scholar
  20. 20.
    Metoyer, R., Lee, B., Riche, N., Czerwinski, M.: Understanding the verbal language and structure of end-user descriptions of data visualizations. ACM CHI (2012)Google Scholar
  21. 21.
    Mori, S.: Introduction to diffusion tensor imaging. Elsevier Science (2007)Google Scholar
  22. 22.
    Mori, S., van Zijl, P.: Fiber tracking: principles and strategies–a technical review. pp. 468–480. Wiley Online Library (2002)Google Scholar
  23. 23.
    Myers, B., Pane, J., Ko, A.: Natural programming languages and environments. pp. 47–52. ACM (2004)Google Scholar
  24. 24.
    Peeters, T., Vilanova, A., Strijkers, G., ter Haar Romeny, B.: Visualization of the fibrous structure of the heart. In: Vision, Modeling and Visualization, pp. 309–316 (2006)Google Scholar
  25. 25.
    Pieper, S., Halle, M., Kikinis, R.: 3d slicer. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 632–635. IEEE (2004)Google Scholar
  26. 26.
    Reas, C., Fry, B.: Processing: a programming handbook for visual designers and artists. The MIT Press (2007)Google Scholar
  27. 27.
    Rheingans, P., Ebert, D.: Volume illustration: Nonphotorealistic rendering of volume models. IEEE Transactions on Visualization and Computer Graphics 7(3), 253–264 (2001)CrossRefGoogle Scholar
  28. 28.
    Rogowitz, B., Kalvin, A.: The which blair project: A quick visual method for evaluating perceptual color maps. In: Proceedings of the conference on Visualization, pp. 183–190. IEEE Computer Society (2001)Google Scholar
  29. 29.
    Roth, S., Kolojejchick, J., Mattis, J., Goldstein, J.: Interactive graphic design using automatic presentation knowledge. In: Intelligent User Interfaces, p. 237 (1998)Google Scholar
  30. 30.
    Stalling, D., Westerhoff, M., Hege, H., et al.: Amira: A highly interactive system for visual data analysis. pp. 749–67 (2005)Google Scholar
  31. 31.
    Tory, M., Moller, T.: Rethinking visualization: A high-level taxonomy. In: IEEE Symposium on Information Visualization, pp. 151–158. IEEE (2004)Google Scholar
  32. 32.
    Toussaint, N., Souplet, J., Fillard, P., et al.: Medinria: Medical image navigation and research tool by inria. In: Proceedings of MICCAI, vol. 7, pp. 1–8 (2007)Google Scholar
  33. 33.
    Wang, R., Wedeen, V.: Diffusion toolkit and trackvis. Proceedings of the International Society for Magnetic Resonance in Medicine 3720 (2007)Google Scholar
  34. 34.
    Wilkinson, L., Wills, G.: The grammar of graphics. Springer Verlag (2005)Google Scholar
  35. 35.
    Zheng, L., Wu, Y., Ma, K.: Perceptually based depth-ordering enhancement for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics (to appear) (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jian Chen
    • 1
  • Haipeng Cai
    • 2
  • Alexander P. Auchus
    • 3
  • David H. Laidlaw
    • 4
  1. 1.Computer Science and Electrical EngineeringUniversity of MarylandBaltimoreUSA
  2. 2.School of ComputingUniversity of Southern MississippiHattiesburgUSA
  3. 3.Department of NeurologyUniversity of Mississippi Medical CenterJacksonUSA
  4. 4.Computer Science DepartmentBrown UniversityProvidenceUSA

Personalised recommendations