Skip to main content

Principles of Optical Coherence Tomography

  • Chapter
  • First Online:
Fiber Optic Sensing and Imaging
  • 1738 Accesses

Abstract

Optical coherence is an optical property describing a degree of correlation between phases of optical waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  Google Scholar 

  2. Saleh BEA, Teich MC (2007) Fundamentals of photonics, Chapter 11, 2nd Edn, Wiley-Interscience (March 9)

    Google Scholar 

  3. Schmitt JM (1999) Optical coherence tomography (OCT): a review. IEEE J Sel Top Quantum Electron 5:1205

    Article  Google Scholar 

  4. Fercher A (1995) Measurement of intraocular distances by backscattering spectral interferometry. Optics Commun 117:43

    Article  Google Scholar 

  5. Drexler W, Fujimoto JG (2008) Optical coherence tomography: technology and applications. Springer, New York

    Book  Google Scholar 

  6. Leitgeb R, Hitzenberger C, Fercher A (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11(8):889–894

    Article  Google Scholar 

  7. Wojtkowski M (2010) High-speed optical coherence tomography: basics and applications. Appl Opt 49:D30–D61

    Article  Google Scholar 

  8. Leitgeb RA, Hitzenberger CK, Fercher AF, Bajraszewski T (2003) Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Opt Lett 28:2201–2203

    Article  Google Scholar 

  9. Choma MA, Yang CH, Izatt JA (2003) Instantaneous quadrature low-coherence interferometry with 3 × 3 fiber-optic couplers. Opt Lett 28:2162

    Article  Google Scholar 

  10. Bhushan B, Wyant JC, Koliopoulos CL (1985) Measurement of surface topography of magnetic tapes by Mirau interferometry. Appl Opt 24:1489–1497

    Article  Google Scholar 

  11. Dubois A (2001) Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets. J Opt Soc Am A 18:1972–1979

    Article  Google Scholar 

  12. Yasuno Y, Makita S, Endo T, Aoki G, Itoh M, Yatagai T (2006) Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography. Appl Opt 45:1861–1865

    Article  Google Scholar 

  13. Wojtkowski M, Srinivasan V, Ko T, Fujimoto J, Kowalczyk A, Duker J (2004) Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 12:2404–2422

    Article  Google Scholar 

  14. Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J, Cable A, Fujimoto JG (2008) Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt Express 16:15149–15169

    Article  Google Scholar 

  15. Huber R, Adler DC, Fujimoto JG (2006) Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett 31:2975–2977

    Article  Google Scholar 

  16. Oh W-Y, Vakoc BJ, Shishkov M, Tearney GJ, Bouma BE (2010) >400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. Opt Lett 35:2919–2921

    Article  Google Scholar 

  17. Grulkowski I, Gora M, Szkulmowski M, Gorczynska I, Szlag D, Marcos S, Kowalczyk A, Wojtkowski M (2009) Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. Opt Express 17:4842–4858

    Article  Google Scholar 

  18. Gora M, Karnowski K, Szkulmowski M, Kaluzny BJ, Huber R, Kowalczyk A, Wojtkowski M (2009) Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt Express 17:14880–14894

    Article  Google Scholar 

  19. Gargesha M, Jenkins MW, Rollins AM, Wilson DL (2008) Denoising and 4D visualization of OCT images. Opt Express 16:12313–12333

    Article  Google Scholar 

  20. Gargesha M, Jenkins MW, Wilson DL, Rollins AM (2009) High temporal resolution OCT using image-based retrospective gating. Opt Express 17:10786–10799

    Article  Google Scholar 

  21. Jenkins MW, Rothenberg F, Roy D, Nikolski VP, Hu Z, Watanabe M, Wilson DL, Efimov IR, Rollins AM (2006) 4D embryonic cardiography using gated optical coherence tomography. Opt Express 14:736–748

    Article  Google Scholar 

  22. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 18:14685–14704

    Article  Google Scholar 

  23. Klein T, Wieser W, Eigenwillig CM, Biedermann BR, Huber R (2011) Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt Express 19:3044–3062

    Article  Google Scholar 

  24. Ustun TE, Iftimia NV, Ferguson RD, Hammer DX (2008) Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array. Rev Sci Instrum 79:114301

    Article  Google Scholar 

  25. Desjardins AE, Vakoc BJ, Suter MJ, Yun SH, Tearney GJ, Bouma BE (2009) Real-time FPGA processing for high-speed optical frequency domain imaging. IEEE Trans Med Imaging 28:1468–1472

    Article  Google Scholar 

  26. Liu G, Zhang J, Yu L, Xie T, Chen Z (2009) Real-time polarization-sensitive optical coherence tomography data processing with parallel computing. Appl Opt 48:6365–6370

    Article  Google Scholar 

  27. Probst J, Hillmann D, Lankenau E, Winter C, Oelckers S, Koch P, Hüttmann G (2010) Optical coherence tomography with online visualization of more than seven rendered volumes per second. J Biomed Opt 15:026014

    Article  Google Scholar 

  28. Watanabe Y, Itagaki T (2009) Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit. J Biomed Opt 14:060506

    Article  Google Scholar 

  29. Zhang K, Kang JU (2010) Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system. Opt Express 18:11772–11784

    Article  Google Scholar 

  30. Jeught SV, Bradu A, Podoleanu AG (2010) Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit. J Biomed Opt 15:030511

    Article  Google Scholar 

  31. Sylwestrzak M, Szkulmowski M, Szlag D, Targowski P (2010) Real-time imaging for Spectral optical coherence tomography with massively parallel data processing. Photonics Lett Poland 2:137–139

    Google Scholar 

  32. Rasakanthan J, Sugden K, Tomlins PH (2011) Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit. J Biomed Opt 16:020505

    Article  Google Scholar 

  33. Kang JU, Zhang K (2010) Real-time complex optical coherence tomography using graphics processing unit for surgical intervention. Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society, p 38-39

    Google Scholar 

  34. Watanabe Y, Maeno S, Aoshima K, Hasegawa H, Koseki H (2010) Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units. Appl Opt 49:4756–4762

    Article  Google Scholar 

  35. Zhang K, Kang JU (2010) Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT. Opt Express 18:23472–23487

    Article  Google Scholar 

  36. Zhang K, Kang JU (2011) Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance. Biomed Opt Express 2:764–770

    Article  Google Scholar 

  37. Yasuno Y, Makita S, Endo T, Aoki G, Itoh M, Yatagai T (2006) Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography. Appl Opt 45:1861–1865

    Article  Google Scholar 

  38. NVIDIA (2012) NVIDIA CUDA CUFFT library version 5.0

    Google Scholar 

  39. Baumann B, Pircher M, Götzinger E, Hitzenberger CK (2007) Full range complex spectral domain optical coherence tomography without additional phase shifters. Opt Express 15:13375–13387

    Article  Google Scholar 

  40. Vergnole S, Lévesque D, Lamouche G (2010) Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography. Opt Express 18:10446–10461

    Article  Google Scholar 

  41. Levoy M (1988) Display of surfaces from volume data. IEEE Comp Graph Appl 8:29–37

    Article  Google Scholar 

  42. Kaufman A, Mueller K (2005) Overview of volume rendering. In: Johnson C, Hansen C (eds) The visualization handbook. Academic, New York

    Google Scholar 

  43. Zhang K, Kang JU (2011) Real-time dual-mode standard/complex Fourier-domain OCT system using graphics processing unit accelerated 4D signal processing and visualization. Proc SPIE 7904:79040J–79041J

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, K., Kang, J.U. (2013). Principles of Optical Coherence Tomography. In: Kang, J. (eds) Fiber Optic Sensing and Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7482-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7482-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7481-4

  • Online ISBN: 978-1-4614-7482-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics