Skip to main content

Cognition in Middle Adulthood

  • Chapter
  • First Online:
Behavior Genetics of Cognition Across the Lifespan

Abstract

Middle adulthood is particularly relevant to the central question of when cognitive decline begins. The fact that mean level change for some cognitive functions tends to be small or absent until or just past late midlife may give the impression that cognition in middle adulthood is of little interest in its own right. Longitudinal studies indicate linear declines in episodic memory from age 60, but there is also evidence of declines occurring earlier in processing speed and spatial processing. Working memory and executive functions represent cognitive abilities that are very important for effective daily functioning, and they are also among the more age-sensitive cognitive domains. In this chapter, we first address some important general issues with respect to behavior genetic research on cognition in middle adulthood. Next, we review some of the extant empirical findings, focusing first on general cognitive ability and then on specific abilities. We conclude that middle adulthood remains an understudied period in phenotypic and behavior genetic studies of cognitive aging. Further study focused specifically on middle adulthood is needed for understanding cognitive changes during midlife itself and for understanding midlife cognition as a “gateway” to cognition in old age. The available data suggest that there are some cognitive changes during midlife itself. However, because these changes tend to be small on average, a greater focus on subgroups of individuals who are manifesting earlier declines will be important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 270–279.

    Google Scholar 

  • Ando, J., Ono, Y., Wright, M. J. (2001). Genetic structure of spatial and verbal working memory. Behavior Genetics, 31, 615–624.

    PubMed  Google Scholar 

  • Baaré, W. F. C., Hulshoff Pol, H. F., Boomsma, D. I., Posthuma, D., de Geus, E. J. C., Schnack, H. G., et al. (2001). Quantitative genetic modeling of variation in human brain morphology. Cerebral Cortex, 11, 816–824.

    PubMed  Google Scholar 

  • Baddeley, A. D. (1992). Working memory. Science, 255, 556–559.

    PubMed  Google Scholar 

  • Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 65–94.

    PubMed  Google Scholar 

  • Blokland, G. A., McMahon, K. L., Hoffman, J., Zhu, G., Meredith, M., Martin, N. G., et al. (2008). Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study. Biological Psychology, 79, 70–79.

    PubMed  Google Scholar 

  • Boomsma, D. I. (1998). Twin registers in Europe: An overview. Twin Research, 1, 34–51.

    PubMed  Google Scholar 

  • Bouchard, T. J., Jr., McGue, M. (2003). Genetic and environmental influences on human psychological differences. Journal of Neurobiology, 54, 4–45.

    PubMed  Google Scholar 

  • Brans, R. G., Kahn, R. S., Schnack, H. G., van Baal, G. C., Posthuma, D., van Haren, N. E., et al. (2010). Brain plasticity and intellectual ability are influenced by shared genes. Journal of Neuroscience, 30, 5519–5524.

    PubMed  Google Scholar 

  • Braver, T. S., Satpute, A. B., Rush, B. K., Racine, C. A., Barch, D. M. (2005). Context processing and context maintenance in healthy aging and early stage dementia of the Alzheimer’s type. Psychology and Aging, 20, 33–46.

    PubMed  Google Scholar 

  • Braver, T. S., Gray, J. R., Burgess, G. C. (2007).Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, J. N. Towse (Eds.), Variation in working memory (pp. 76–108). New York: Oxford University Press.

    Google Scholar 

  • Braver, T. S., Paxton, J. L., Locke, H. S., Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences USA, 106, 7351–7356.

    Google Scholar 

  • Chou, L. N., Kuo, P. H., Lin, C. C., Chen, W. J. (2010). Genetic and environmental influences on the Wisconsin Card Sorting Test performance in healthy adolescents: A twin/sibling study. Behavior Genetics, 40(1), 22–30.

    PubMed  Google Scholar 

  • Corkin, S. (2002). What’s new with the amnesic patient H.M.? Nature Reviews. Neuroscience, 3, 153–160.

    PubMed  Google Scholar 

  • Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 996–1005.

    PubMed  Google Scholar 

  • Deary, I. J., Whalley, L. J., Lemmon, H., Crawford, J. R., Starr, J. M. (2000). The stability of individual differences in mental ability from childhood to old age: Follow-up of the 1932 Scottish mental survey. Intelligence, 28, 49–55.

    Google Scholar 

  • Deary, I. J., Whiteman, M. C., Pattie, A., Starr, J. M., Hayward, C., Wright, A. F., et al. (2002). Cognitive change and the APOE4 allele. Nature, 418, 932.

    PubMed  Google Scholar 

  • Deary, I. J., Wright, A. F., Harris, S. E., Whalley, L. J., Starr, J. M. (2004). Searching for genetic influences on normal cognitive ageing. Trends in Cognitive Sciences, 8, 178–184.

    PubMed  Google Scholar 

  • Deary, I. J., Johnson, W., Starr, J. M. (2010a). Are processing speed tasks biomarkers of cognitive aging? Psychology and Aging, 25, 219–228.

    Google Scholar 

  • Deary, I. J., Penke, L., Johnson, W. (2010b). The neuroscience of human intelligence differences. Nature Reviews. Neuroscience, 11, 201–211.

    Google Scholar 

  • Deary, I. J., Yang, J., Davies, G., Harris, S. E., Tenesa, A., Liewald, D., et al. (2012). Genetic contributions to stability and change in intelligence from childhood to old age. Nature, 482(7384), 212–215.

    PubMed  Google Scholar 

  • Delis, D. C., Kramer, J. H., Kaplan, E., Ober, B. A. (2000). California Verbal Learning Test. San Antonio: Psychological Corporation.

    Google Scholar 

  • Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., et al. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. Journal of the American Medical Association, 278, 1349–1356.

    PubMed  Google Scholar 

  • Fennema-Notestine, C., Panizzon, M. S., Thompson, W. R., Chen, C. H., Eyler, L. T., Fischl, B., et al. (2011). Presence of ApoE epsilon4 allele associated with thinner frontal cortex in middle age. Journal of Alzheimer’s Disease, 26(Suppl 3), 49–60.

    PubMed  Google Scholar 

  • Finch, C. E. (1991). Middle-age: An evolving frontier in gerontology. Neurobiology of Aging, 12, 1–2.

    PubMed  Google Scholar 

  • Finkel, D., McGue, M. (1998). Age differences in the nature and origin of individual differences in memory: A behavior genetic analysis. International Journal of Aging and Human Development, 47, 217–239.

    PubMed  Google Scholar 

  • Finkel, D., McGue, M. (2007). Genetic and environmental influences on intraindividual variability in reaction time. Experimental Aging Research, 33, 13–35.

    PubMed  Google Scholar 

  • Finkel, D., Pedersen, N. L. (2000). Contribution of age, genes, and environment to the relationship between perceptual speed and cognitive ability. Psychology and Aging, 15, 56–64.

    PubMed  Google Scholar 

  • Finkel, D., Pedersen, N. L., McGue, M. (1995a). Genetic influences on memory performance in adulthood: Comparison of Minnesota and Swedish twin data. Psychology and Aging, 10, 437–446.

    Google Scholar 

  • Finkel, D., Pedersen, N. L., McGue, M., McClearn, G. E. (1995b). Heritability of cognitive abilities in adult twins: Comparison of Minnesota and Swedish data. Behavior Genetics, 25, 421–431.

    Google Scholar 

  • Finkel, D., Pedersen, N. L., Plomin, R., McClearn, G. E. (1998). Longitudinal and cross-sectional twin data on cognitive abilities in adulthood: The Swedish Adoption/Twin Study of Aging. Developmental Psychology, 34, 1400–1413.

    PubMed  Google Scholar 

  • Finkel, D., Reynolds, C. A., McArdle, J. J., Gatz, M., Pedersen, N. L. (2003). Latent growth curve analyses of accelerating decline in cognitive abilities in late adulthood. Developmental Psychology, 39, 535–550.

    PubMed  Google Scholar 

  • Finkel, D., Reynolds, C. A., McArdle, J. J., Pedersen, N. L. (2005). The longitudinal relationship between processing speed and cognitive ability: Genetic and environmental influences. Behavior Genetics, 35, 535–549.

    PubMed  Google Scholar 

  • Finkel, D., Reynolds, C. A., McArdle, J. J., Pedersen, N. L. (2007). Age changes in processing speed as a leading indicator of cognitive aging. Psychology and Aging, 22, 558–568.

    PubMed  Google Scholar 

  • Finkel, D., Reynolds, C. A., McArdle, J. J., Hamagami, F., Pedersen, N. L. (2009). Genetic variance in processing speed drives variation in aging of spatial and memory abilities. Developmental Psychology, 45, 820–834.

    PubMed  Google Scholar 

  • Flory, J. D., Manuck, S. B., Ferrell, R. E., Ryan, C. M., Muldoon, M. F. (2000). Memory performance and the apolipoprotein E polymorphism in a community sample of middle-aged adults. American Journal of Medical Genetics (Neuropsychiatric Genetics), 96, 707–711.

    PubMed  Google Scholar 

  • Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172–179.

    PubMed  Google Scholar 

  • Friedman, N. P., Miyake, A., Young, S. E., Defries, J. C., Corley, R. P., Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology General, 137, 201–225.

    PubMed  Google Scholar 

  • Fuster, J. M. (1995). Memory in the cerebral cortex. Cambridge: MIT Press.

    Google Scholar 

  • Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., et al. (2006). Role of genes and environments for explaining Alzheimer disease. Archives of General Psychiatry, 63, 168–174.

    PubMed  Google Scholar 

  • Goodale, M. A., Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25.

    PubMed  Google Scholar 

  • Hasher, L., Zacks, R. T. (1988).Working memory, comprehension, and aging: A review and new view. In G.H. Bower (Ed.), The psychology of learning and motivation (pp. 193–225). New York: Academic Press.

    Google Scholar 

  • Haworth, C. M., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J., van Beijsterveldt, C. E., et al. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15, 1112–1120.

    PubMed  Google Scholar 

  • Hertzog, C., Dixon, R. A., Hultsch, D. F., MacDonald, S. W. (2003). Latent change models of adult cognition: Are changes in processing speed and working memory associated with changes in episodic memory? Psychology and Aging, 18, 755–769.

    PubMed  Google Scholar 

  • Hulshoff Pol, H. E., Schnack, H. G., Posthuma, D., Mandl, R. C., Baare, W. F., van Oel, C., et al. (2006). Genetic contributions to human brain morphology and intelligence. Journal of Neuroscience, 26, 10235–10242.

    PubMed  Google Scholar 

  • Hultsch, D. F., Hertzog, C., Dixon, R. A., Small, B. J. (1998). Memory change in the aged. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jak, A. J., Spoon, K. M., Panizzon, M. S., Franz, C. E., Thompson, W. K., Jacobson, K. C., et al. (2013). Hippocampal atrophy varies by neuropsychological definition of mild cognitive impairment in men in their 50s. Paper to be presented at the annual meeting of the International Neuropsychological Society, Waikoloa, HI.

    Google Scholar 

  • Johnson, W., Bouchard, T. J., Jr., Segal, N. L., Keyes, M., Samuels, J. (2003). The Stroop Color-Word Test: Genetic and environmental influences; reading ability, mental ability, and personality correlates. Journal of Educational Psychology, 95, 58–65.

    Google Scholar 

  • Jorm, A. F., Mather, K. A., Butterworth, P., Anstey, K. J., Christensen, H., Easteal, S. (2007). APOE genotype and cognitive functioning in a large age-stratified population sample. Neuropsychology, 21, 1–8.

    PubMed  Google Scholar 

  • Karlsgodt, K. H., Kochunov, P., Winkler, A. M., Laird, A. R., Almasy, L., Duggirala, R., et al. (2010). A multimodal assessment of the genetic control over working memory. Journal of Neuroscience, 30, 8197–8202.

    PubMed  Google Scholar 

  • Koten, J. W., Jr., Wood, G., Hagoort, P., Goebel, R., Propping, P., Willmes, K., et al. (2009). Genetic contribution to variation in cognitive function: An FMRI study in twins. Science, 323, 1737–1740.

    PubMed  Google Scholar 

  • Kremen, W. S., Thompson-Brenner, H., Leung, Y. J., Grant, M. D., Franz, C. E., Eisen, S. A., et al. (2006). Genes, environment, and time: The Vietnam Era Twin Study of Aging (VETSA). Twin Research and Human Genetics, 9, 1009–1022.

    PubMed  Google Scholar 

  • Kremen, W. S., Eisen, S. A., Tsuang, M. T., Lyons, M. J. (2007a). Is the Wisconsin Card Sorting Test a useful neurocognitive endophenotype? American Journal of Medical Genetics (Neuropsychiatric Genet), 144B, 403–406.

    Google Scholar 

  • Kremen, W. S., Jacobsen, K. C., Xian, H., Eisen, S. A., Eaves, L. J., Tsuang, M. T., et al. (2007b). Genetics of verbal working memory processes: A twin study of middle-aged men. Neuropsychology, 21, 569–580.

    Google Scholar 

  • Kremen, W. S., Xian, H., Jacobson, K. C., Eaves, L. J., Franz, C. E., Panizzon, M. S. (2008). Storage and executive components of working memory: Integrating cognitive psychology and behavior genetics in the study of aging. Journal of Gerontology: Psychological Sciences, 63B, 84–91.

    Google Scholar 

  • Kremen, W. S., Jacobson, K. C., Panizzon, M. S., Xian, H., Eaves, L. J., Eisen, S. A. et al. (2009). Factor structure of planning and problem-solving: A behavioral genetic analysis of the tower of London task in middle-aged twins. Behavior Genetics, 39, 133–144.

    Google Scholar 

  • Kremen, W. S., Lyons, M. J. (2011).Behavior genetics of aging. In K. W. Schaie, S.L. Willis (Eds.), Handbook of the psychology of aging (pp. 93–107). San Diego: Elsevier.

    Google Scholar 

  • Kremen, W. S., Mai, T., Panizzon, M. S., Franz, C. E., Blankfeld, H. M., Xian, H., et al. (2011a). A twin study of spatial and non-spatial delayed response performance in middle age. Brain and Cognition, 76, 43–51.

    Google Scholar 

  • Kremen, W. S., Panizzon, M. S., Xian, H., Barch, D. M., Franz, C. E., Grant, M. D., et al. (2011b). Genetic architecture of context processing in late middle age: More than one underlying mechanism. Psychology and Aging, 26, 852–863.

    Google Scholar 

  • Luciano, M., Wright, M. J., Smith, G. A., Geffen, G. M., Geffen, L. B., Martin, N. G. (2001). Genetic covariance among measures of information processing speed, working memory, and IQ. Behavior Genetics, 31, 581–592.

    PubMed  Google Scholar 

  • Luciano, M., Posthuma, D., Wright, M. J., de Geus, E. J., Smith, G. A., Geffen, G. M., et al. (2005). Perceptual speed does not cause intelligence, and intelligence does not cause perceptual speed. Biological Psychology, 70, 1–8.

    PubMed  Google Scholar 

  • Luciano, M., Gow, A. J., Taylor, M. D., Hayward, C., Harris, S. E., Campbell, H., et al. (2009). Apolipoprotein E is not related to memory abilities at 70 years of age. Behavior Genetics, 39, 6–14.

    PubMed  Google Scholar 

  • Lyons, M. J., York, T. P., Franz, C. E., Grant, M. D., Eaves, L. J., Jacobson, K. C., et al. (2009). Genes determine stability and the environment determines change in cognitive ability during 35 years of adulthood. Psychological Science, 20, 1146–1152.

    PubMed  Google Scholar 

  • Maher, B. (2008). Personal genomes: The case of the missing heritability. Nature, 456, 18–21.

    PubMed  Google Scholar 

  • McArdle, J. J., Prescott, C., Hamagami, F., Horn, J. L. (1998). A contemporary method for development-genetic analyses of age changes in intellectual abilities. Developmental Neuropsychology, 14, 69–114.

    Google Scholar 

  • McCartney, K., Harris, M., Bernieri, F. (1990). Growing up and growing apart: A developmental meta-analysis of twin studies. Psychological Bulletin, 107, 226–237.

    PubMed  Google Scholar 

  • McGue, M., Bouchard, T. J., Iacono, W. G., Lykken, D. T. (1993).Behavior genetics of cognitive abilities: A life-span perspective. In R. Plomin, G. E. McClearn (Eds.), Nature, nurture and psychology (pp. 59–76). Washington, DC: American Psychological Association.

    Google Scholar 

  • McGue, M., Christensen, K. (2002). The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. Experimental Aging Research, 28, 435–451.

    PubMed  Google Scholar 

  • Meehl, P. E. (1977). MAXCOV-HITMAX: A taxonomic search method for loose genetic syndromes. In Psychodiagnosis: Selected Papers (pp. 200–224). New York: Norton.

    Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    PubMed  Google Scholar 

  • Pan, Y., Wang, K. S., Aragam, N. (2011). NTM and NR3C2 polymorphisms influencing intelligence: Family-based association studies. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 154–160.

    Google Scholar 

  • Panizzon, M. S., Hauger, R., Dale, A. M., Eaves, L. J., Eyler, L. T., Fischl, B., et al. (2010). Testosterone modifies the effect of APOE genotype on hippocampal volume in middle-aged men. Neurology, 75, 874–880.

    PubMed  Google Scholar 

  • Panizzon, M. S., Lyons, M. J., Jacobson, K. C., Franz, C. E., Grant, M. D., Eisen, S. A., et al. (2011). Genetic architecture of learning and delayed recall: A twin study of episodic memory. Neuropsychology, 25, 488–498.

    PubMed  Google Scholar 

  • Panza, F., D’Introno, A., Colacicco, A. M., Capurso, C., Del Parigi, A., Caselli, R. J., et al. (2005). Current epidemiology of mild cognitive impairment and other predementia syndromes. American Journal of Geriatric Psychiatry, 13, 633–644.

    PubMed  Google Scholar 

  • Pedersen, N. L., Plomin, R., Nesselroade, J. R., McClearn, G. E. (1992). A quantitative genetic analysis of cognitive abilities during the second half of the life span. Psychological Science, 3, 346–353.

    Google Scholar 

  • Pedersen, N. L., Plomin, R., McClearn, G. E. (1994). Is there G beyond g?(Is there genetic influence on specific cognitive abilities independent of genetic influence on general cognitive ability?). Intelligence, 18, 133–143.

    Google Scholar 

  • Pedersen, N. L., Lichtenstein, P., Svedberg, P. (2002). The Swedish Twin Registry in the third millennium. Twin Research, 5, 427–432.

    PubMed  Google Scholar 

  • Plomin, R., Pedersen, N. L., Lichtenstein, P., McClearn, G. E. (1994). Variability and stability in cognitive abilities are largely genetic later in life. Behavior Genetics, 24, 207–215.

    PubMed  Google Scholar 

  • Plomin, R., Spinath, F. M. (2004). Intelligence: genetics, genes, and genomics. Journal of Personality and Social Psychology, 86, 112–129.

    PubMed  Google Scholar 

  • Poirier, J. (2003). Apolipoprotein E and cholesterol metabolism in the pathogenesis and treatment of Alzheimer’s disease. Trends in Molecular Medicine, 9, 94–101.

    PubMed  Google Scholar 

  • Posthuma, D., de Geus, E. J., Boomsma, D. I. (2001a). Perceptual speed and IQ are associated through common genetic factors. Behavior Genetics, 31, 593–602.

    Google Scholar 

  • Posthuma, D., Neale, M. C., Boomsma, D. I., de Geus, E. J. C. (2001b). Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation. Behavior Genetics, 31, 567–579.

    Google Scholar 

  • Posthuma, D., Baare, W. F., Hulshoff Pol, H. E., Kahn, R. S., Boomsma, D. I., De Geus, E. J. (2003). Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Research, 6, 131–139.

    PubMed  Google Scholar 

  • Raber, J., Bongers, G., LeFevour, A., Buttini, M., Mucke, L. (2002). Androgens protect against apolipoprotein E4-induced cognitive deficits. Journal of Neuroscience, 22, 5204–5209.

    PubMed  Google Scholar 

  • Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In F. I. M. Craik, T. A. Salthouse (Eds.), The handbook of aging and cognition (pp. 1–90). Hillsdale: Erlbaum.

    Google Scholar 

  • Reynolds, C. A., Finkel, D., McArdle, J. J., Gatz, M., Berg, S., Pedersen, N. L. (2005). Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Developmental Psychology, 41, 3–16.

    PubMed  Google Scholar 

  • Roberts, R. O., Geda, Y. E., Knopman, D. S., Cha, R. H., Pankratz, V. S., Boeve, B. F., et al. (2012). The incidence of MCI differs by subtype and is higher in men: The Mayo Clinic Study of Aging. Neurology, 78, 342–351.

    PubMed  Google Scholar 

  • Rönnlund, M., Nyberg, L., Backman, L., Nilsson, L. G. (2005). Stability, growth, and decline in adult life span development of declarative memory: Cross-sectional and longitudinal data from a population-based study. Psychology and Aging, 20, 3–18.

    PubMed  Google Scholar 

  • Sabb, F. W., Burggren, A. C., Higier, R. G., Fox, J., He, J., Parker, D. S., et al. (2009). Challenges in phenotype definition in the whole-genome era: Multivariate models of memory and intelligence. Neuroscience, 164, 88–107.

    PubMed  Google Scholar 

  • Salthouse, T. A. (1985).Speed of behavior and its implications for cognition. In J. E. Birren, K. W. Schaie (Eds.), Handbook of the psychology of aging (pp. 400–426). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30, 507–514.

    PubMed  Google Scholar 

  • Schaie, K. W. (1996). Intellectual development in adulthood: The Seattle Longitudinal Study. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schaie, K. W. (2005). Developmental influences on adult intelligence: The Seattle Longitudinal Study. New York: Oxford University Press.

    Google Scholar 

  • Schaie, K. W., Willis, S. L., Caskie, G. I. (2004). The Seattle Longitudinal Study: Relationship between personality and cognition. Aging, Neuropsychology, and Cognition, 11, 304–324.

    Google Scholar 

  • Schultz, M. R., Lyons, M. J., Franz, C. E., Grant, M. D., Boake, C., Jacobson, K. C., et al. (2008). Apolipoprotein E genotype and memory in the sixth decade of life. Neurology, 70, 1771–1777.

    PubMed  Google Scholar 

  • Singer, J. J., Macgregor, A. J., Cherkas, L. F., Spector, T. D. (2006). Genetic influences on cognitive function using the Cambridge Neuropsychological Test Automated Battery. Intelligence, 34, 421–428.

    Google Scholar 

  • Singh-Manoux, A., Kivimaki, M., Glymour, M. M., Elbaz, A., Berr, C., Ebmeier, K. P., et al. (2011). Timing of onset of cognitive decline: Results from Whitehall II prospective cohort study. British Medical Journal, 343, d7622.

    Google Scholar 

  • Small, B. J., Rosnick, C. B., Fratiglioni, L., Backman, L. (2004). Apolipoprotein E and cognitive performance: A meta-analysis. Psychology and Aging, 19, 592–600.

    PubMed  Google Scholar 

  • Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 280–292.

    Google Scholar 

  • Swan, G. E., Reed, T., Jack, L. M., Miller, B. L., Markee, T., Wolf, P. A., et al. (1999). Differential genetic influence for components of memory in aging adult twins. Archives of Neurology, 56, 1127–1132.

    PubMed  Google Scholar 

  • Taylor, J. (2007). Heritability of Wisconsin Card Sorting Test (WCST) and Stroop Color-Word Test performance in normal individuals: Implications for the search for endophenotypes. Twin Research and Human Genetics, 10, 829–834.

    PubMed  Google Scholar 

  • Tucker-Drob, E. M. (2011). Global and domain-specific changes in cognition throughout adulthood. Developmental Psychology, 47, 331–343.

    PubMed  Google Scholar 

  • Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9, 160–164.

    Google Scholar 

  • Vasilopoulos, T., Franz, C. E., Panizzon, M. S., Xian, H., Grant, M. D., Lyons, M. J., et al. (2012). Genetic architecture of the Delis-Kaplan Executive Function System Trail Making Test: Evidence for distinct genetic influences on executive function. Neuropsychology, 26, 238–250.

    PubMed  Google Scholar 

  • Vogler, G. P. (2006).Behavior genetics and aging. In J. E. Birren, K. W. Schaie (Eds.), Handbook of the psychology of aging (pp. 41–55). San Diego: Elsevier.

    Google Scholar 

  • West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292.

    PubMed  Google Scholar 

  • Wisdom, N. M., Callahan, J. L., Hawkins, K. A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: A meta-analysis. Neurobiology of Aging, 32, 63–74.

    PubMed  Google Scholar 

  • Wolf, O. T., Krischbaum, C. (2001). Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Hormones and Behavior, 41, 259–266.

    Google Scholar 

  • Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565–569.

    PubMed  Google Scholar 

  • Zhang, J. P., Burdick, K. E., Lencz, T., Malhotra, A. K. (2010). Meta-analysis of genetic variation in DTNBP1 and general cognitive ability. Biological Psychiatry, 68, 1126–1133.

    PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by grants from the National Institute on Aging (R01 AG018386, R01 AG018384, R01 AG022381, R01 AG037985, and R01 AG022982). This material is also the result of work supported in part with resources of the Center of Excellence for Stress and Mental Health at the VA San Diego Healthcare System. The Cooperative Studies Program of the Office of Research and Development of the US Department of Veterans Affairs has provided financial support for the development and maintenance of the Vietnam Era Twin (VET) Registry. Numerous organizations have provided invaluable assistance in the conduct of this study, including: Department of Defense; National Personnel Records Center, National Archives and Records Administration; the Internal Revenue Service; National Opinion Research Center; National Research Council, National Academy of Sciences; the Institute for Survey Research, Temple University. Most importantly, the authors gratefully acknowledge the continued cooperation and participation of the members of the VET Registry and their families. Without their contribution, this research would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Kremen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kremen, W., Moore, C., Franz, C., Panizzon, M., Lyons, M. (2014). Cognition in Middle Adulthood. In: Finkel, D., Reynolds, C. (eds) Behavior Genetics of Cognition Across the Lifespan. Advances in Behavior Genetics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7447-0_4

Download citation

Publish with us

Policies and ethics