Interactions Between Socioeconomic Status and Components of Variation in Cognitive Ability

  • Eric TurkheimerEmail author
  • Erin E. Horn
Part of the Advances in Behavior Genetics book series (AIBG, volume 1)


We have proposed that differences in the heritability of cognitive ability as a function of socioeconomic status (SES) be called the Scarr-Rowe interaction, after the investigator who first reported it (Scarr) and the investigator who provided a crucial replication (Rowe). In 2003, a replication by Turkheimer et al. (Psychol Sci 14:623–628, 2003) sparked renewed interest in the subject. Since then, there have been a large number of attempts at replication using a diversity of cultures, ages, and measures of cognitive ability. We review recent studies, and delve more deeply into the nature of the phenomenon itself. Differences in heritability coefficients are necessarily the result of differences in identical (MZ) and fraternal (DZ) twin correlations, which are in turn ratios of variances between and within twin pairs. We review the existing literature with this in mind, reanalyzing the results where possible to examine how between- and within-pair variances change with differences in SES. We also include recent attempts to replicate the interaction using molecular genetic data rather than family relationships. We conclude that with two exceptions, the Scarr-Rowe interaction has replicated in American samples, in both family and molecular genetic studies. The interaction has fared less well in Europe, where more equal access to educational and other economic resources, which are crucial to observing differences in heritability, may limit the severity of poverty, although early reports that the phenomenon was not found in the large British Twins’ Early Development Study (TEDS) sample have been tempered by more recent positive results. Finally, we offer a proposal for the possible mechanism of the effect.


Parental Education Twin Pair Twin Correlation Early Childhood Longitudinal Study Shared Environmental Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Asbury, K., Wachs, T. D., & Plomin, R. (2005). Environmental moderators of genetic influence on verbal and nonverbal abilities in early childhood. Intelligence, 33, 643–661. doi:10.1016/j.intell.2005.03.008.CrossRefGoogle Scholar
  2. Bartels, M., van Beijsterveldt, C. E. M., & Boomsma, D. I. (2009). Breastfeeding, maternal education and cognitive function: A prospective study in twins. Behavior Genetics, 39, 616–622. doi:10.1007/s10519-009-9293-9.PubMedCrossRefGoogle Scholar
  3. Beam, C. R., & Turkheimer, E. (2013). Phenotype-environment correlations in longitudinal twin models. Development and Psychopathology, 25, 7–16.PubMedCrossRefGoogle Scholar
  4. Bronfenbrenner, U., & Ceci, S. J. (1994). Nature-nuture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101, 568–586. doi:10.1037/0033-295X.101.4.568.PubMedCrossRefGoogle Scholar
  5. Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J. P., Cesarini, D., van der Loos, M. J. H. M., et al. (2012). Most reported genetic associations with general intelligence are probably false positives. Psychological Science, 23, 1314–1323. Scholar
  6. Charney, E. (2012). Behavior genetics and post genomics. Behavioral and Brain Sciences, 35, 331–358. Scholar
  7. Chiang, M.-C., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Hickie, I., Toga, A. W., Wright, M. J., & Thompson, P. M. (2010). Genetics of white matter development: A DTI study of 705 twins and their siblings aged 12 to 29. NeuroImage, 54, 2308–2317. doi:10.1016/j.neuroimage.2010.10.015.PubMedCrossRefGoogle Scholar
  8. DeFries, J., & Fulker, D. (1985). Multiple regression analysis of twin data. Behavior Genetics, 15, 467–473. doi:10.1007/BF01066239.PubMedCrossRefGoogle Scholar
  9. Eaves, L. J., & Jinks, J. L. (1972). Insignificance of evidence for differences in heritability of IQ between races and social classes. Nature, 240, 84–88.PubMedCrossRefGoogle Scholar
  10. Enoch, M.-A., Wahed, J. F., Harris, C. R., Albaugh, B., & Goldman, D. (2009). COMT Val 158Met and cognition: Main effects and interaction with educational attainment. Genes, Brain, and Behavior, 8, 36–42. doi:10.1111/j.1601-183X.2008.00441.x.PubMedCrossRefGoogle Scholar
  11. Fischbein, S. (1980). IQ and social class. Intelligence, 4, 51–63.CrossRefGoogle Scholar
  12. Friend, A., DeFries, J. C., & Olson, R. K. (2008). Parental education moderates genetic influences on reading disability. Psychological Science, 19, 1124–1130. doi:10.1111/j.1467-9280.2008.02213.x.PubMedCrossRefGoogle Scholar
  13. Grant, M. D., Kremen, W. S., Jacobson, K. C., Franz, C., Xian, H., Eisen, S. A., Toomey, R., Murray, R. E., & Lyons, M. J. (2010). Does parental education have a moderating effect on the genetic and environmental influences of general cognitive ability in early adulthood? Behavior Genetics, 40, 438–446. doi:10.1007/s10519-010-9351-3.PubMedCrossRefGoogle Scholar
  14. Hanscombe, K. B., Trzaskowski, M., Haworth, C. M., Davis, O. S., Dale, P. S., & Plomin, R. (2012). Socioeconomic status (SES) and children’s intelligence (IQ): In a UK-representative sample SES moderates the environmental, not genetic, effect on IQ. PLoS One, 7, 1–16. doi:10.1371/journal.pone.0030320.CrossRefGoogle Scholar
  15. Harden, K. P., Turkheimer, E., & Loehlin, J. C. (2007). Genotype by environment interaction in adolescents’ cognitive aptitude. Behavior Genetics, 32, 273–283. doi:10.1007/s10519-006-9113-4.CrossRefGoogle Scholar
  16. Hewitt, J. K. (2012). Editorial policy on candidate gene association and candidate gene-by-environment interaction studies of complex traits. Behavior Genetics, 42, 1–2. doi:10.1007/s10519-011-9504-z.PubMedCrossRefGoogle Scholar
  17. Keltikangas-Järvinen, L., Jokela, M., Hintsanen, M., Salo, J., Hintsa, T., Alatupa, S., & Lehtimäki, T. (2010). Does genetic background moderate the association between parental education and school achievement? Genes, Brain and Behavior, 9, 318–324. doi:10.1111/j.1601-183X.2009.00561.x.CrossRefGoogle Scholar
  18. Koeppen-Schomerus, G., Eley, T. C., Wolke, D., Gringras, P., & Plomin, R. (2000). The interaction of prematurity with genetic and environmental influences on cognitive development in twins. The Journal of Pediatrics, 137, 527–533. doi:10.1067/mpd.2000.108445.PubMedCrossRefGoogle Scholar
  19. Kremen, W. S., Jacobson, K. C., Xian, H., Eisen, S. A., Waterman, B., Toomey, R., Neale, M. C., Tsuang, M. T., & Lyons, M. J. (2005). Heritability of word recognition in middle-aged men varies as a function of parental education. Behavior Genetics, 35, 417–433. doi:10.1007/s10519-004-3876-2.PubMedCrossRefGoogle Scholar
  20. LaBuda, M. C., & DeFries, J. C. (1990). Genetic etiology of reading disability: Evidence from a twin study. In G. T. Pavlidis (Ed.), Perspectives on dyslexia (Vol. 1, pp. 47–76). New York: Wiley.Google Scholar
  21. McGrath, L. M., Pennington, B. F., Willcut, R. G., Boada, R., Shriberg, L. D., & Smith, S. D. (2007). Gene × environment interactions in speech sound disorder predict language and preliteracy outcomes. Development and Psychopathology, 19, 1047–1072. doi:10.1017/S0954579407000533.PubMedCrossRefGoogle Scholar
  22. Muthén, L. K., & Muthén, B. O. (2011). Mplus V. 6.12 [Computer software]. Los Angeles, CA: Authors.Google Scholar
  23. Nagoshi, C. T., & Johnson, R. C. (2005). Socioeconomic status does not moderate the familiality of cognitive abilities in the Hawaii Family Study of Cognition. Journal of Biosocial Science, 37, 773–781. doi: 10.1017/S0021932004007023.Google Scholar
  24. Nisbett, R. E., Aronson, J., Blair, C., Dickens, W., Flynn, J., Halpern, D. F., & Turkheimer, E. (2012). Intelligence: New findings and theoretical developments. American Psychologist, 67, 130–159. doi:10.1037/a0026699.Google Scholar
  25. Plomin, R., & Bergeman, C. S. (1991). The nature of nurture: Genetic influence on “environmental” measures. Behavioral and Brain Sciences, 14, 373–386. doi: Scholar
  26. Rhemtulla, M., & Tucker-Drob, E. M. (2012). Gene-by-socioeconomic interaction in school readiness. Behavior Genetics, 42, 549–558. doi:10.1007/s10519-012-9527-0.PubMedCrossRefGoogle Scholar
  27. Rowe, D. C., Jacobson, K. C., & van den Oord, E. J. C. G. (1999). Genetic and environmental influences on vocabulary IQ: Parental education level as a moderator. Child Development, 70, 1151–1162. doi:10.1111/1467-8624.00084.PubMedCrossRefGoogle Scholar
  28. Rushton, J. P., & Jensen, A. R. (2010). Race and IQ: A theory-based review of the research in Richard Nisbett’s Intelligence and How to Get It. The Open Psychology Journal, 3, 9–25. doi:10.2174/1874350101003010009.CrossRefGoogle Scholar
  29. Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory of genotype greater than environment effects. Child Development, 54, 424–435. Scholar
  30. Scarr-Salapatek, S. (1971). Race, social class, and IQ. Science, 174, 1285–1295. doi:10.1126/science.174.4016.1285.PubMedCrossRefGoogle Scholar
  31. Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428. doi:10.1037/0033-2909.86.2.420.PubMedCrossRefGoogle Scholar
  32. Taylor, J., Roehrig, A. D., Hensler, B. S., Connor, C. M., & Schatschneider, C. (2010). Teacher quality moderates the genetic effects on early reading. Science, 328, 512–514. doi:10.1126/science.1186149.PubMedCrossRefGoogle Scholar
  33. Towers, H., Spotts, E. L., & Neiderhiser, J. M. (2003). Genetic and environmental influences on parenting and marital relationships. Marriage & Family Review, 33, 11–29. doi:10.1300/J002v33n01_03.CrossRefGoogle Scholar
  34. Tucker-Drob, E. M., & Harden, K. P. (2012). Intellectual interest mediates gene × socioeconomic interaction on adolescent academic achievement. Child Development, 83, 743–757. doi:10.1111/j.1467-8624.2011.01721.x.PubMedGoogle Scholar
  35. Tucker-Drob, E. M., Rhemtulla, M., Harden, K. P., Turkheimer, E., & Fask, D. (2011). Emergence of a gene x socioeconomic status interaction on infant mental ability between 10 months and 2 years. Psychological Science, 22, 125–133. doi:10.1177/0956797610392926.PubMedCrossRefGoogle Scholar
  36. Turkheimer, E., Harden, K. P., D’Onofrio, B., & Gottesman, I. I. (2009). The Scarr–Rowe interaction between measured socioeconomic status and the heritability of cognitive ability. In K. McCartney, & R. A. Weinberg (Eds.) Experience and development: A festschrift in honor of Sandra Wood Scarr (pp. 81–97). New York: Psychology Press.Google Scholar
  37. Turkheimer, E., & Harden, K. P. (in press). Behavior genetic research methods: Testing quasi-causal hypotheses using multivariate twin data. In H. T. Reis & C. M. Judd (Eds.), Handbook of Research Methods in Personality and Social Psychology. Cambridge: Cambridge University Press.Google Scholar
  38. Turkheimer, E., & Waldron, M. (2000). Nonshared environment: A theoretical, methodological, and quantitative review. Psychological Bulletin, 126, 78–108. doi:10.1037//0033-2909.1261.78.PubMedCrossRefGoogle Scholar
  39. Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14, 623–628.PubMedCrossRefGoogle Scholar
  40. van den Oord, E. J. C. G., & Rowe, D. C. (1998). An examination of genotype-environment interactions for academic achievement in an U.S. national longitudinal survey. Intelligence, 25, 205–228. doi:10.1016/S0160-2896(97)90043–X.CrossRefGoogle Scholar
  41. van der Sluis, S., Willemsen, G., de Geus, E. J. C., Boomsma, D. I., & Posthuma, D. (2008). Gene-environment interaction in adults’ IQ scores: Measures of past and present environment. Behavior Genetics, 38, 348–360. doi:10.1007/s10519-008-9212-5.PubMedCrossRefGoogle Scholar
  42. van der Sluis, S., Posthuma, D., & Dolan, C. V. (2012). A note on false positives and power in G × E modelling of twin data. Behavior Genetics, 42, 170–186. doi:10.1007/s10519-011-9480-3.PubMedCrossRefGoogle Scholar
  43. Yeo, R. A., Gangestad, S. W., Liu, J., Calhoun, V. D., & Hutchinson, K. E. (2011). Rare copy number deletions predict individual variation in intelligence. PLoS One, 6, 1–8. doi:10.1371/journal.pone.0016339.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations