Sex Differentiation: Organizing Effects of Sex Hormones

Part of the Focus on Sexuality Research book series (FOSR)

Abstract

Men and women differ, not only in their anatomy but also in their behavior. Research using animal models has convincingly shown that sex differences in the brain and behavior are induced by sex hormones during a specific, hormone-sensitive period during early development. Thus, a male-typical brain is organized under the influence of testosterone, mostly acting during fetal development, whereas a female-typical brain is organized under the influence of estradiol, mostly acting after birth, during a specific prepubertal period. Sex differences in behavior reflect sex differences in the brain, mostly in the hypothalamus and the olfactory system, the latter being important in mate selection. There is also evidence, albeit clinical, for a role of testosterone in the sexual differentiation of the human brain, in particular in inducing male gender role behavior and heterosexual orientation. However, whether estradiol is involved in the development of a female brain in humans still needs to be elucidated.

References

  1. Allen, L. S., Hines, M., Shryne, J. E., & Gorski, R. A. (1989). Two sexually dimorphic cell groups in the human brain. Journal of Neuroscience, 9, 497–506.PubMedGoogle Scholar
  2. Amateau, S. K., Alt, J. J., Stamps, C. L., & McCarthy, M. M. (2004). Brain estradiol content in newborn rats: Sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology, 145, 2906–2917.PubMedCrossRefGoogle Scholar
  3. Bakker, J. (2010). Sexual behavior and hormones in male mammals. In M. D. Breed & J. Moore (Eds.), Encyclopedia of animal behavior (Vol. 3, pp. 170–176). Oxford: Academic.CrossRefGoogle Scholar
  4. Bakker, J., Baillien, M., Honda, S., Harada, N., & Balthazart, J. (2004). Relationships between aromatase activity in the brain and gonads and behavioural deficits in homozygous and heterozygous aromatase knockout mice. Journal of Neuroendocrinology, 16, 483–490.PubMedCrossRefGoogle Scholar
  5. Bakker, J., De Mees, C., Douhard, Q., Balthazart, J., Gabant, P., Szpirer, J., et al. (2006). Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nature Neuroscience, 9, 220–226.PubMedCrossRefGoogle Scholar
  6. Bakker, J., Honda, S., Harada, N., & Balthazart, J. (2002). Sexual partner preference requires a functional aromatase (Cyp19) gene in male mice. Hormones and Behavior, 42, 158–171.PubMedCrossRefGoogle Scholar
  7. Bakker, J., Honda, S., Harada, N., & Balthazart, J. (2004). Restoration of male sexual behavior by adult exogenous estrogens in male aromatase knockout mice. Hormones and Behavior, 46, 1–10.PubMedCrossRefGoogle Scholar
  8. Baum, M. J. (1979). Differentiation of coital behavior in mammals: A comparative analysis. Neuroscience and Biobehavior Reviews, 3, 265–284.CrossRefGoogle Scholar
  9. Baum, M. J. (2006). Mammalian animal models of psychosexual differentiation: When is translation to the human situation possible? Hormones and Behavior, 50, 579–588.PubMedCrossRefGoogle Scholar
  10. Baum, M. J., & Tobet, S. A. (1986). Effect of prenatal exposure to aromatase inhibitor, testosterone, or antiandrogen on the development of feminine sexual behavior in ferrets of both sexes. Physiology and Behavior, 37, 111–118.PubMedCrossRefGoogle Scholar
  11. Berglund, H., Lindstrom, P., & Savic, I. (2006). Brain response to putative pheromones in lesbian women. Proceedings of the National Academy of Sciences of the United States of America, 103, 8269–8274.PubMedCrossRefGoogle Scholar
  12. Beyer, C., Wozniak, A., & Hutchison, J. B. (1993). Sex-specific aromatization of testosterone in mouse hypothalamic neurons. Neuroendocrinology, 58, 673–681.PubMedCrossRefGoogle Scholar
  13. Bodo, C., & Rissman, E. F. (2007). Androgen receptor is essential for sexual differentiation of responses to olfactory cues in mice. European Journal of Neuroscience, 25, 2182–2190.PubMedCrossRefGoogle Scholar
  14. Brock, O., Baum, M. J., & Bakker, J. (2011). The development of female sexual behavior requires prepubertal estradiol. Journal of Neuroscience, 31, 5574–5578.PubMedCrossRefGoogle Scholar
  15. Brock, O., Douhard, Q., Baum, M. J., & Bakker, J. (2010). Reduced prepubertal expression of progesterone receptor in the hypothalamus of female aromatase knockout mice. Endocrinology, 151, 1814–1821.PubMedCrossRefGoogle Scholar
  16. Burke, S. M., Veltman, D. J., Gerber, J., Hummel, T., & Bakker, J. (2012). Heterosexual men and women both show a hypothalamic response to the chemosignal androstadienone. PLoS One, 7(7), e40993.PubMedCrossRefGoogle Scholar
  17. Byne, W., Tobet, S., Mattiace, L. A., Lasco, M. S., Kemether, E., Edgar, M. A., et al. (2001). The interstitial nuclei of the human anterior hypothalamus: An investigation of variation with sex, sexual orientation, and HIV status. Hormones and Behavior, 40, 86–92.PubMedCrossRefGoogle Scholar
  18. Dohler, K. D., Hancke, J. L., Srivastava, S. S., Hofmann, C., Shryne, J. E., & Gorski, R. A. (1984). Participation of estrogens in female sexual differentiation of the brain; neuroanatomical, neuroendocrine and behavioral evidence. Progress in Brain Research, 61, 99–117.PubMedCrossRefGoogle Scholar
  19. Downey, J., Ehrhardt, A. A., Gruen, R., Bell, J. J., & Morishima, A. (1989). Psychopathology and social functioning in women with Turner syndrome. The Journal of Nervous and Mental Disease, 177, 191–201.PubMedCrossRefGoogle Scholar
  20. Feder, H. H., & Whalen, R. E. (1964). Feminine behavior in neonatally castrated and estrogen-treated male rats. Science, 147, 306–307.CrossRefGoogle Scholar
  21. Gerall, A. A., Dunlap, J. L., & Hendricks, S. E. (1973). Effect of ovarian secretions on female behavioral potentiality in the rat. Journal of Comparative Physiology Psychology, 82, 449–465.CrossRefGoogle Scholar
  22. Gorski, R. A., Gordon, J. H., Shryne, J. E., & Southam, A. M. (1978). Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research, 148, 333–346.PubMedCrossRefGoogle Scholar
  23. Honda, S., Harada, N., Ito, S., Takagi, Y., & Maeda, S. (1998). Disruption of sexual behavior in male aromatase-deficient mice lacking exons 1 and 2 of the cyp19 gene. Biochemical and Biophysical Research Communication, 252, 445–449.CrossRefGoogle Scholar
  24. Hutchison, J. B., Beyer, C., Hutchison, R. E., & Wozniak, A. (1995). Sexual dimorphism in the developmental regulation of brain aromatase. The Journal of Steroid Biochemistry and Molecular Biology, 53, 307–313.PubMedCrossRefGoogle Scholar
  25. Kelliher, K. R., & Baum, M. J. (2001). Nares occlusion eliminates heterosexual partner selection without disrupting coitus in ferrets of both sexes. Journal of Neuroscience, 21, 5832–5840.PubMedGoogle Scholar
  26. Keverne, E. B. (2004). Importance of olfactory and vomeronasal systems for male sexual function. Physiology and Behavior, 83, 177–187.PubMedGoogle Scholar
  27. Koopman, P., Munsterberg, A., Capel, B., Vivian, N., & Lovell-Badge, R. (1990). Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 348, 450–452.PubMedCrossRefGoogle Scholar
  28. Lamprecht, S. A., Kohen, F., Ausher, J., Zor, U., & Lindner, H. R. (1976). Hormonal stimulation of oestradiol-17 beta release from the rat ovary during early postnatal development. Journal of Endocrinology, 68, 343–344.PubMedCrossRefGoogle Scholar
  29. LeVay, S. (1991). A difference in hypothalamic structure between heterosexual and homosexual men. Science, 253, 1034–1037.PubMedCrossRefGoogle Scholar
  30. Lombardi, J. R., & Vandenbergh, J. G. (1977). Pheromonally induced sexual maturation in females: Regulation by the social environment of the male. Science, 196, 545–546.PubMedCrossRefGoogle Scholar
  31. McEwen, B. S., Plapinger, L., Chaptal, C., Gerlach, J., & Wallach, G. (1975). Role of fetoneonatal estrogen binding proteins in the associations of estrogen with neonatal brain cell nuclear receptors. Brain Research, 96, 400–406.PubMedCrossRefGoogle Scholar
  32. Meisel, R. L., & Sachs, B. D. (1994). The physiology of male sexual behavior. In J. D. Neill (Ed.), The physiology of reproduction (pp. 3–104). New York, NY: Raven.Google Scholar
  33. Meyer-Bahlburg, H. F. L., Dolezal, C., Baker, S. W., & New, M. I. (2008). Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Archives of Sexual Behavior, 37, 85–99.PubMedCrossRefGoogle Scholar
  34. Morris, J. A., Jordan, C. L., & Breedlove, S. M. (2004). Sexual differentiation of the vertebrate nervous system. Nature Neuroscience, 7, 1034–1039.PubMedCrossRefGoogle Scholar
  35. Naftolin, F., Ryan, K. J., Davies, I. J., Reddy, V. V., Flores, F., Petro, Z., et al. (1975). The formation of estrogens by central neuroendocrine tissues. Recent Progress in Hormone Research, 31, 295–319.PubMedGoogle Scholar
  36. Paredes, R. G., & Baum, M. J. (1995). Altered sexual partner preference in male ferrets given excitotoxic lesions of the preoptic area/anterior hypothalamus. Journal of Neuroscience, 15, 6619–6630.PubMedGoogle Scholar
  37. Paredes, R. G., Tzschentke, T., & Nakach, N. (1998). Lesions of the medial preoptic area/anterior hypothalamus (MPOA/AH) modify partner preference in male rats. Brain Research, 813, 1–8.PubMedCrossRefGoogle Scholar
  38. Phoenix, C. H., Goy, R. W., Gerall, A. A., & Young, W. C. (1959). Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 65, 369–382.PubMedCrossRefGoogle Scholar
  39. Pointis, G., Latreille, M. T., & Cedard, L. (1980). Gonado-pituitary relationships in the fetal mouse at various times during sexual differentiation. Journal of Endocrinology, 86, 483–488.PubMedCrossRefGoogle Scholar
  40. Preti, G., Wysocki, C. J., Barnhart, K. T., Sondheimer, S. J., & Leyden, J. J. (2003). Male axillary extracts contain pheromones that affect pulsatile secretion of luteinizing hormone and mood in women recipients. Biology of Reproduction, 68, 2107–2113.PubMedCrossRefGoogle Scholar
  41. Quadros, P. S., Goldstein, A. Y., De Vries, G. J., & Wagner, C. K. (2002). Regulation of sex differences in progesterone receptor expression in the medial preoptic nucleus of postnatal rats. Journal of Neuroendocrinology, 14, 761–767.PubMedCrossRefGoogle Scholar
  42. Raynaud, J. P. (1973). Influence of rat estradiol binding plasma protein (EBP) on uterotrophic activity. Steroids, 21, 249–258.PubMedCrossRefGoogle Scholar
  43. Rolstad, S. G., Moller, A., Bryman, I., & Boman, U. W. (2007). Sexual functioning and partner relationships in women with turner syndrome: Some empirical data and theoretical considerations regarding sexual desire. Journal of Sex and Marital Therapy, 33, 231–247.PubMedCrossRefGoogle Scholar
  44. Roselli, C. E., Larkin, K., Resko, J. A., Stellflug, J. N., & Stormshak, F. (2004). The volume of a sexually dimorphic nucleus in the ovine medial preoptic area/anterior hypothalamus varies with sexual partner preference. Endocrinology, 145, 478–483.PubMedCrossRefGoogle Scholar
  45. Ross, J. L., Roeltgen, D., Feuillan, P., Kushner, H., & Cutler, G. B., Jr. (1998). Effects of estrogen on nonverbal processing speed and motor function in girls with Turner’s syndrome. Journal of Clinical Endocrinology and Metabolism, 83, 3198–3204.PubMedCrossRefGoogle Scholar
  46. Sato, T., Matsumoto, T., Kawano, H., Watanabe, T., Uematsu, Y., Sekine, K., et al. (2004). Brain masculinization requires androgen receptor function. Proceedings of the National Academy of Sciences of the United States of America, 101, 1673–1678.PubMedCrossRefGoogle Scholar
  47. Savic, I., Berglund, H., Gulyas, B., & Roland, P. (2001). Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activation in humans. Neuron, 31, 661–668.PubMedCrossRefGoogle Scholar
  48. Savic, I., Berglund, H., & Lindstrom, P. (2005). Brain response to putative pheromones in homosexual men. Proceedings of the National Academy of Sciences of the United States of America, 102, 7356–7361.PubMedCrossRefGoogle Scholar
  49. Scalia, F., & Winans, S. S. (1975). The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. The Journal of Comparative Neurology, 161, 31–55.PubMedCrossRefGoogle Scholar
  50. Schwarting, G. A., Wierman, M. E., & Tobet, S. A. (2007). Gonadotropin-releasing hormone neuronal migration. Seminars in Reproductive Medecine, 25, 305–312.CrossRefGoogle Scholar
  51. Shaeffer, A. T., Lange, E., & Bondy, C. A. (2008). Sexual function in women with Turner Syndrome. Journal of Women’s Health, 17, 27–33.CrossRefGoogle Scholar
  52. Silverman, A. J., Livne, I., & Witkin, J. W. (1994). The gonadotropin-releasing hormone (GnRH) neuronal systems: Immunocytochemistry and in situ hybridization. In J. D. Neill (Ed.), The physiology of reproduction (pp. 1683–1709). New York, NY: Raven.Google Scholar
  53. Stern, K., & McClintock, M. K. (1998). Regulation of ovulation by human pheromones. Nature, 392, 177–179.PubMedCrossRefGoogle Scholar
  54. Swaab, D. F. (2007). Sexual differentiation of the brain and behavior. Best Practice and Research. Clinical Endocrinology and Metabolism, 21, 431–444.PubMedCrossRefGoogle Scholar
  55. Swaab, D. F., & Hofman, M. A. (1990). An enlarged suprachiasmatic nucleus in homosexual men. Brain Research, 537, 141–148.PubMedCrossRefGoogle Scholar
  56. Swaab, D. F., Slob, A. K., Houtsmuller, E. J., Brand, T., & Zhou, J. N. (1995). Increased number of vasopressin neurons in the suprachiasmatic nucleus (SCN) of “bisexual” adult male rats following perinatal treatment with the aromatase blocker ATD. Dev. Brain Research, 85, 273–279.PubMedCrossRefGoogle Scholar
  57. Tirindelli, R., Dibattista, M., Pifferi, S., & Menini, A. (2009). From pheromones to behavior. Physiology Reviews, 89, 921–956.CrossRefGoogle Scholar
  58. Tobet, S. A., Zahniser, D. J., & Baum, M. J. (1986). Sexual dimorphism in the preoptic/anterior hypothalamic area of ferrets: Effects of adult exposure to sex steroids. Brain Research, 364, 249–257.PubMedCrossRefGoogle Scholar
  59. Toran-Allerand, C. D. (1976). Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: Implications for sexual differentiation. Brain Research, 106, 407–412.PubMedCrossRefGoogle Scholar
  60. Wersinger, S. R., & Rissman, E. F. (2000). Oestrogen receptor alpha is essential for female-directed chemo-investigatory behavior but is not required for the pheromone-induced luteinizing hormone surge in male mice. Journal of Neuroendocrinology, 12, 103–110.PubMedCrossRefGoogle Scholar
  61. Whitten, W. K. (1959). Occurrence of anoestrus in mice caged in groups. Journal of Endocrinology, 18, 102–107.PubMedCrossRefGoogle Scholar
  62. Zhou, J. N., Hofman, M. A., Gooren, L. J., & Swaab, D. F. (1995). A sex difference in the human brain and its relation to transsexuality. Nature, 378, 68–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.GIGA NeurosciencesUniversity of LiègeLiègeBelgium
  2. 2.Netherlands Institute for NeurosciencesAmsterdamThe Netherlands
  3. 3.Department of Medical PsychologyVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations