Skip to main content

Sex Differentiation: Organizing Effects of Sex Hormones

  • Chapter
  • First Online:
Gender Dysphoria and Disorders of Sex Development

Part of the book series: Focus on Sexuality Research ((FOSR))

Abstract

Men and women differ, not only in their anatomy but also in their behavior. Research using animal models has convincingly shown that sex differences in the brain and behavior are induced by sex hormones during a specific, hormone-sensitive period during early development. Thus, a male-typical brain is organized under the influence of testosterone, mostly acting during fetal development, whereas a female-typical brain is organized under the influence of estradiol, mostly acting after birth, during a specific prepubertal period. Sex differences in behavior reflect sex differences in the brain, mostly in the hypothalamus and the olfactory system, the latter being important in mate selection. There is also evidence, albeit clinical, for a role of testosterone in the sexual differentiation of the human brain, in particular in inducing male gender role behavior and heterosexual orientation. However, whether estradiol is involved in the development of a female brain in humans still needs to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, L. S., Hines, M., Shryne, J. E., & Gorski, R. A. (1989). Two sexually dimorphic cell groups in the human brain. Journal of Neuroscience, 9, 497–506.

    PubMed  Google Scholar 

  • Amateau, S. K., Alt, J. J., Stamps, C. L., & McCarthy, M. M. (2004). Brain estradiol content in newborn rats: Sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology, 145, 2906–2917.

    Article  PubMed  Google Scholar 

  • Bakker, J. (2010). Sexual behavior and hormones in male mammals. In M. D. Breed & J. Moore (Eds.), Encyclopedia of animal behavior (Vol. 3, pp. 170–176). Oxford: Academic.

    Chapter  Google Scholar 

  • Bakker, J., Baillien, M., Honda, S., Harada, N., & Balthazart, J. (2004). Relationships between aromatase activity in the brain and gonads and behavioural deficits in homozygous and heterozygous aromatase knockout mice. Journal of Neuroendocrinology, 16, 483–490.

    Article  PubMed  Google Scholar 

  • Bakker, J., De Mees, C., Douhard, Q., Balthazart, J., Gabant, P., Szpirer, J., et al. (2006). Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nature Neuroscience, 9, 220–226.

    Article  PubMed  Google Scholar 

  • Bakker, J., Honda, S., Harada, N., & Balthazart, J. (2002). Sexual partner preference requires a functional aromatase (Cyp19) gene in male mice. Hormones and Behavior, 42, 158–171.

    Article  PubMed  Google Scholar 

  • Bakker, J., Honda, S., Harada, N., & Balthazart, J. (2004). Restoration of male sexual behavior by adult exogenous estrogens in male aromatase knockout mice. Hormones and Behavior, 46, 1–10.

    Article  PubMed  Google Scholar 

  • Baum, M. J. (1979). Differentiation of coital behavior in mammals: A comparative analysis. Neuroscience and Biobehavior Reviews, 3, 265–284.

    Article  Google Scholar 

  • Baum, M. J. (2006). Mammalian animal models of psychosexual differentiation: When is translation to the human situation possible? Hormones and Behavior, 50, 579–588.

    Article  PubMed  Google Scholar 

  • Baum, M. J., & Tobet, S. A. (1986). Effect of prenatal exposure to aromatase inhibitor, testosterone, or antiandrogen on the development of feminine sexual behavior in ferrets of both sexes. Physiology and Behavior, 37, 111–118.

    Article  PubMed  Google Scholar 

  • Berglund, H., Lindstrom, P., & Savic, I. (2006). Brain response to putative pheromones in lesbian women. Proceedings of the National Academy of Sciences of the United States of America, 103, 8269–8274.

    Article  PubMed  Google Scholar 

  • Beyer, C., Wozniak, A., & Hutchison, J. B. (1993). Sex-specific aromatization of testosterone in mouse hypothalamic neurons. Neuroendocrinology, 58, 673–681.

    Article  PubMed  Google Scholar 

  • Bodo, C., & Rissman, E. F. (2007). Androgen receptor is essential for sexual differentiation of responses to olfactory cues in mice. European Journal of Neuroscience, 25, 2182–2190.

    Article  PubMed  Google Scholar 

  • Brock, O., Baum, M. J., & Bakker, J. (2011). The development of female sexual behavior requires prepubertal estradiol. Journal of Neuroscience, 31, 5574–5578.

    Article  PubMed  Google Scholar 

  • Brock, O., Douhard, Q., Baum, M. J., & Bakker, J. (2010). Reduced prepubertal expression of progesterone receptor in the hypothalamus of female aromatase knockout mice. Endocrinology, 151, 1814–1821.

    Article  PubMed  Google Scholar 

  • Burke, S. M., Veltman, D. J., Gerber, J., Hummel, T., & Bakker, J. (2012). Heterosexual men and women both show a hypothalamic response to the chemosignal androstadienone. PLoS One, 7(7), e40993.

    Article  PubMed  Google Scholar 

  • Byne, W., Tobet, S., Mattiace, L. A., Lasco, M. S., Kemether, E., Edgar, M. A., et al. (2001). The interstitial nuclei of the human anterior hypothalamus: An investigation of variation with sex, sexual orientation, and HIV status. Hormones and Behavior, 40, 86–92.

    Article  PubMed  Google Scholar 

  • Dohler, K. D., Hancke, J. L., Srivastava, S. S., Hofmann, C., Shryne, J. E., & Gorski, R. A. (1984). Participation of estrogens in female sexual differentiation of the brain; neuroanatomical, neuroendocrine and behavioral evidence. Progress in Brain Research, 61, 99–117.

    Article  PubMed  Google Scholar 

  • Downey, J., Ehrhardt, A. A., Gruen, R., Bell, J. J., & Morishima, A. (1989). Psychopathology and social functioning in women with Turner syndrome. The Journal of Nervous and Mental Disease, 177, 191–201.

    Article  PubMed  Google Scholar 

  • Feder, H. H., & Whalen, R. E. (1964). Feminine behavior in neonatally castrated and estrogen-treated male rats. Science, 147, 306–307.

    Article  Google Scholar 

  • Gerall, A. A., Dunlap, J. L., & Hendricks, S. E. (1973). Effect of ovarian secretions on female behavioral potentiality in the rat. Journal of Comparative Physiology Psychology, 82, 449–465.

    Article  Google Scholar 

  • Gorski, R. A., Gordon, J. H., Shryne, J. E., & Southam, A. M. (1978). Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research, 148, 333–346.

    Article  PubMed  Google Scholar 

  • Honda, S., Harada, N., Ito, S., Takagi, Y., & Maeda, S. (1998). Disruption of sexual behavior in male aromatase-deficient mice lacking exons 1 and 2 of the cyp19 gene. Biochemical and Biophysical Research Communication, 252, 445–449.

    Article  Google Scholar 

  • Hutchison, J. B., Beyer, C., Hutchison, R. E., & Wozniak, A. (1995). Sexual dimorphism in the developmental regulation of brain aromatase. The Journal of Steroid Biochemistry and Molecular Biology, 53, 307–313.

    Article  PubMed  Google Scholar 

  • Kelliher, K. R., & Baum, M. J. (2001). Nares occlusion eliminates heterosexual partner selection without disrupting coitus in ferrets of both sexes. Journal of Neuroscience, 21, 5832–5840.

    PubMed  Google Scholar 

  • Keverne, E. B. (2004). Importance of olfactory and vomeronasal systems for male sexual function. Physiology and Behavior, 83, 177–187.

    PubMed  Google Scholar 

  • Koopman, P., Munsterberg, A., Capel, B., Vivian, N., & Lovell-Badge, R. (1990). Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 348, 450–452.

    Article  PubMed  Google Scholar 

  • Lamprecht, S. A., Kohen, F., Ausher, J., Zor, U., & Lindner, H. R. (1976). Hormonal stimulation of oestradiol-17 beta release from the rat ovary during early postnatal development. Journal of Endocrinology, 68, 343–344.

    Article  PubMed  Google Scholar 

  • LeVay, S. (1991). A difference in hypothalamic structure between heterosexual and homosexual men. Science, 253, 1034–1037.

    Article  PubMed  Google Scholar 

  • Lombardi, J. R., & Vandenbergh, J. G. (1977). Pheromonally induced sexual maturation in females: Regulation by the social environment of the male. Science, 196, 545–546.

    Article  PubMed  Google Scholar 

  • McEwen, B. S., Plapinger, L., Chaptal, C., Gerlach, J., & Wallach, G. (1975). Role of fetoneonatal estrogen binding proteins in the associations of estrogen with neonatal brain cell nuclear receptors. Brain Research, 96, 400–406.

    Article  PubMed  Google Scholar 

  • Meisel, R. L., & Sachs, B. D. (1994). The physiology of male sexual behavior. In J. D. Neill (Ed.), The physiology of reproduction (pp. 3–104). New York, NY: Raven.

    Google Scholar 

  • Meyer-Bahlburg, H. F. L., Dolezal, C., Baker, S. W., & New, M. I. (2008). Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Archives of Sexual Behavior, 37, 85–99.

    Article  PubMed  Google Scholar 

  • Morris, J. A., Jordan, C. L., & Breedlove, S. M. (2004). Sexual differentiation of the vertebrate nervous system. Nature Neuroscience, 7, 1034–1039.

    Article  PubMed  Google Scholar 

  • Naftolin, F., Ryan, K. J., Davies, I. J., Reddy, V. V., Flores, F., Petro, Z., et al. (1975). The formation of estrogens by central neuroendocrine tissues. Recent Progress in Hormone Research, 31, 295–319.

    PubMed  Google Scholar 

  • Paredes, R. G., & Baum, M. J. (1995). Altered sexual partner preference in male ferrets given excitotoxic lesions of the preoptic area/anterior hypothalamus. Journal of Neuroscience, 15, 6619–6630.

    PubMed  Google Scholar 

  • Paredes, R. G., Tzschentke, T., & Nakach, N. (1998). Lesions of the medial preoptic area/anterior hypothalamus (MPOA/AH) modify partner preference in male rats. Brain Research, 813, 1–8.

    Article  PubMed  Google Scholar 

  • Phoenix, C. H., Goy, R. W., Gerall, A. A., & Young, W. C. (1959). Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 65, 369–382.

    Article  PubMed  Google Scholar 

  • Pointis, G., Latreille, M. T., & Cedard, L. (1980). Gonado-pituitary relationships in the fetal mouse at various times during sexual differentiation. Journal of Endocrinology, 86, 483–488.

    Article  PubMed  Google Scholar 

  • Preti, G., Wysocki, C. J., Barnhart, K. T., Sondheimer, S. J., & Leyden, J. J. (2003). Male axillary extracts contain pheromones that affect pulsatile secretion of luteinizing hormone and mood in women recipients. Biology of Reproduction, 68, 2107–2113.

    Article  PubMed  Google Scholar 

  • Quadros, P. S., Goldstein, A. Y., De Vries, G. J., & Wagner, C. K. (2002). Regulation of sex differences in progesterone receptor expression in the medial preoptic nucleus of postnatal rats. Journal of Neuroendocrinology, 14, 761–767.

    Article  PubMed  Google Scholar 

  • Raynaud, J. P. (1973). Influence of rat estradiol binding plasma protein (EBP) on uterotrophic activity. Steroids, 21, 249–258.

    Article  PubMed  Google Scholar 

  • Rolstad, S. G., Moller, A., Bryman, I., & Boman, U. W. (2007). Sexual functioning and partner relationships in women with turner syndrome: Some empirical data and theoretical considerations regarding sexual desire. Journal of Sex and Marital Therapy, 33, 231–247.

    Article  PubMed  Google Scholar 

  • Roselli, C. E., Larkin, K., Resko, J. A., Stellflug, J. N., & Stormshak, F. (2004). The volume of a sexually dimorphic nucleus in the ovine medial preoptic area/anterior hypothalamus varies with sexual partner preference. Endocrinology, 145, 478–483.

    Article  PubMed  Google Scholar 

  • Ross, J. L., Roeltgen, D., Feuillan, P., Kushner, H., & Cutler, G. B., Jr. (1998). Effects of estrogen on nonverbal processing speed and motor function in girls with Turner’s syndrome. Journal of Clinical Endocrinology and Metabolism, 83, 3198–3204.

    Article  PubMed  Google Scholar 

  • Sato, T., Matsumoto, T., Kawano, H., Watanabe, T., Uematsu, Y., Sekine, K., et al. (2004). Brain masculinization requires androgen receptor function. Proceedings of the National Academy of Sciences of the United States of America, 101, 1673–1678.

    Article  PubMed  Google Scholar 

  • Savic, I., Berglund, H., Gulyas, B., & Roland, P. (2001). Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activation in humans. Neuron, 31, 661–668.

    Article  PubMed  Google Scholar 

  • Savic, I., Berglund, H., & Lindstrom, P. (2005). Brain response to putative pheromones in homosexual men. Proceedings of the National Academy of Sciences of the United States of America, 102, 7356–7361.

    Article  PubMed  Google Scholar 

  • Scalia, F., & Winans, S. S. (1975). The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. The Journal of Comparative Neurology, 161, 31–55.

    Article  PubMed  Google Scholar 

  • Schwarting, G. A., Wierman, M. E., & Tobet, S. A. (2007). Gonadotropin-releasing hormone neuronal migration. Seminars in Reproductive Medecine, 25, 305–312.

    Article  Google Scholar 

  • Shaeffer, A. T., Lange, E., & Bondy, C. A. (2008). Sexual function in women with Turner Syndrome. Journal of Women’s Health, 17, 27–33.

    Article  Google Scholar 

  • Silverman, A. J., Livne, I., & Witkin, J. W. (1994). The gonadotropin-releasing hormone (GnRH) neuronal systems: Immunocytochemistry and in situ hybridization. In J. D. Neill (Ed.), The physiology of reproduction (pp. 1683–1709). New York, NY: Raven.

    Google Scholar 

  • Stern, K., & McClintock, M. K. (1998). Regulation of ovulation by human pheromones. Nature, 392, 177–179.

    Article  PubMed  Google Scholar 

  • Swaab, D. F. (2007). Sexual differentiation of the brain and behavior. Best Practice and Research. Clinical Endocrinology and Metabolism, 21, 431–444.

    Article  PubMed  Google Scholar 

  • Swaab, D. F., & Hofman, M. A. (1990). An enlarged suprachiasmatic nucleus in homosexual men. Brain Research, 537, 141–148.

    Article  PubMed  Google Scholar 

  • Swaab, D. F., Slob, A. K., Houtsmuller, E. J., Brand, T., & Zhou, J. N. (1995). Increased number of vasopressin neurons in the suprachiasmatic nucleus (SCN) of “bisexual” adult male rats following perinatal treatment with the aromatase blocker ATD. Dev. Brain Research, 85, 273–279.

    Article  PubMed  Google Scholar 

  • Tirindelli, R., Dibattista, M., Pifferi, S., & Menini, A. (2009). From pheromones to behavior. Physiology Reviews, 89, 921–956.

    Article  Google Scholar 

  • Tobet, S. A., Zahniser, D. J., & Baum, M. J. (1986). Sexual dimorphism in the preoptic/anterior hypothalamic area of ferrets: Effects of adult exposure to sex steroids. Brain Research, 364, 249–257.

    Article  PubMed  Google Scholar 

  • Toran-Allerand, C. D. (1976). Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: Implications for sexual differentiation. Brain Research, 106, 407–412.

    Article  PubMed  Google Scholar 

  • Wersinger, S. R., & Rissman, E. F. (2000). Oestrogen receptor alpha is essential for female-directed chemo-investigatory behavior but is not required for the pheromone-induced luteinizing hormone surge in male mice. Journal of Neuroendocrinology, 12, 103–110.

    Article  PubMed  Google Scholar 

  • Whitten, W. K. (1959). Occurrence of anoestrus in mice caged in groups. Journal of Endocrinology, 18, 102–107.

    Article  PubMed  Google Scholar 

  • Zhou, J. N., Hofman, M. A., Gooren, L. J., & Swaab, D. F. (1995). A sex difference in the human brain and its relation to transsexuality. Nature, 378, 68–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Bakker Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bakker, J. (2014). Sex Differentiation: Organizing Effects of Sex Hormones. In: Kreukels, B., Steensma, T., de Vries, A. (eds) Gender Dysphoria and Disorders of Sex Development. Focus on Sexuality Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7441-8_1

Download citation

Publish with us

Policies and ethics