Real-Time Forecasting and Visualization of Hurricane Waves and Storm Surge Using SWAN+ADCIRC and FigureGen

  • J. C. Dietrich
  • C. N. Dawson
  • J. M. Proft
  • M. T. Howard
  • G. Wells
  • J. G. Fleming
  • R. A. LuettichJr.
  • J. J. Westerink
  • Z. Cobell
  • M. Vitse
  • H. Lander
  • B. O. Blanton
  • C. M. Szpilka
  • J. H. Atkinson
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 156)

Abstract

Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge is useful for two primary purposes: forecasting of storm impacts for response planning, particularly the evacuation of vulnerable coastal populations; and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration, and sustainability. Model results must be communicated quickly and effectively, to provide context about the magnitudes and locations of the maximum waves and surges in time for meaningful actions to be taken in the impact region before a storm strikes.In this paper, we present an overview of the SWAN + ADCIRC modeling system for coastal waves and circulation. We also describe FigureGen, a graphics program adapted to visualize hurricane waves and storm surge as computed by these models. The system was applied recently to forecast Hurricane Isaac (2012) as it made landfall in southern Louisiana. Model results are shown to be an accurate warning of the impacts of waves and circulation along the northern Gulf coastline, especially when communicated to emergency managers as geo-referenced images.

Keywords

Hurricane waves Storm surge Hurricane Isaac (2012) ASGS SWAN ADCIRC FigureGen 

References

  1. 1.
    Arcement, G.J., and Schneider, V.R. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. U.S. Geological Survey Water Supply Paper 2339, U.S. Geological Survey, Denver, CO, 38pp. (1989).Google Scholar
  2. 2.
    Barnes, H.H. Roughness characteristics of natural channels. U.S. Geological Survey Water Supply Paper 1849, U.S. Geological Survey, Washington, DC, 213pp. (1967).Google Scholar
  3. 3.
    Blanton, B.O., McGee, J., Fleming, J.G., Kaiser, C., Kaiser, H., Lander, H., Luettich Jr., R.A., Dresback, K.M., and Kolar, R.L. Urgent computing of storm surge for North Carolina’s coast. Proceedings of the International Conference on Computational Science, ICCS 2012, Procedia Computer Science, 9, 1677–1686 (2012).CrossRefGoogle Scholar
  4. 4.
    Booij, N., and Holthuijsen, L.H. Propagation of ocean waves in discrete spectral wave models. Journal of Computational Physics, 68, 307–326 (1987).CrossRefMATHGoogle Scholar
  5. 5.
    Booij, N., Ris, R.C., and Holthuijsen, L.H. A third-generation wave model for coastal regions, Part I, Model description and validation. Journal of Geophysical Research, 104, 7649–7666 (1999).CrossRefGoogle Scholar
  6. 6.
    Brown, D., and Brennan, M. (2012). Hurricane Isaac Tropical Cyclone Position Estimate. National Hurricane Center, August 28, http://www.nhc.noaa.gov/archive/2012/al09/al092012.posest.08282356.shtml.
  7. 7.
    Chow, V.T. Open-Channel Hydraulics. McGraw-Hill Book Company, 680pp. (1959).Google Scholar
  8. 8.
    Bunya, S., Dietrich, J.C.,Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R.E., Resio, D.T., Luettich Jr., R.A., Dawson, C.N., Cardone, V.J., Cox, A.T., Powell, M.D., Westerink, H.J., and Roberts, H.J. A High Resolution Coupled Riverine Flow, Tide, Wind, WindWave and Storm Surge Model for Southern Louisiana and Mississippi: Part I: Model Development and Validation. Monthly Weather Review, 138(2), 345–377 (2010).Google Scholar
  9. 9.
    Dawson, C.N., Westerink, J.J., Feyen, J.C., and Pothina, D. Continuous, Discontinuous and Coupled Discontinuous–Continuous Galerkin Finite Element Methods for the Shallow Water Equations. International Journal for Numerical Methods in Fluids, 52, 63–88 (2006).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dawson, C.N., Kubatko, E.J., Westerink, J.J., Trahan, C.J., Mirabito, C., Michoski, C., and Panda, N. Discontinuous Galerkin Methods for Modeling Hurricane Storm Surge. Advances in Water Resources, DOI 10.1016/j.advwatres.2010.11.004, 34, 1165–1176 (2011).Google Scholar
  11. 11.
    DeMeritt, M. A Foundation for Ocean GIS. ArcUser, Fall 2011.Google Scholar
  12. 12.
    Dietrich, J.C., Kolar, R.L., Luettich Jr, R.A. Assessment of ADCIRCs Wetting and Drying Algorithm. Proceedings of Computational Methods in Water Resources, C.T. Miller, M.W. Farthing, W.G. Gray, and G.F. Pinder, eds., 2, 1767—1778 (2004).Google Scholar
  13. 13.
    Dietrich, J.C., Bunya, S., Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R.E., Resio, D.T., Luettich Jr., R.A., Dawson, C.N., Cardone, V.J., Cox, A.T., Powell, M.D.,Westerink, H.J., and Roberts, H.J. A High Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part II: Synoptic Description and Analyses of Hurricanes Katrina and Rita. Monthly Weather Review, 138, 378–404 (2010).Google Scholar
  14. 14.
    Dietrich, J.C., Zijlema, M., Westerink, J.J., Holthuijsen, L.H., Dawson, C.N., Luettich Jr, R.A., Jensen, R.E., Smith, J.M., Stelling, G.S., Stone, G.W. Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58, 45–65, DOI:10.1016/j.coastaleng.2010.08.001 (2011a).Google Scholar
  15. 15.
    Dietrich, J.C., Westerink, J.J., Kennedy, A.B., Smith, J.M., Jensen, R.E., Zijlema, M., Holthuijsen, L.H., Dawson, C.N., Luettich Jr., R.A., Powell, M.D., Cardone, V.J., Cox, A.T., Stone, G.W., Pourtaheri, H., Hope, M.E., Tanaka, S., Westerink, L.G., Westerink, H.J., and Cobell, Z. Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Validation and Synoptic Analysis in Southern Louisiana. Monthly Weather Review, 139(8), 2488–2522 (2011b).CrossRefGoogle Scholar
  16. 16.
    Dietrich, J.C., Trahan, C.J., Howard, M.T., Fleming, J.G., Weaver, R.J., Tanaka, S., Yu, L., Luettich Jr, R.A., Dawson, C.N., Westerink, J.J., Wells, G., Lu, A., Vega, K., Kubach, A., Dresback, K.M., Kolar, R.L., Kaiser, C., Twilley, R.R. (2012). Surface Trajectories of Oil Transport along the Northern Coastline of the Gulf of Mexico. Continental Shelf Research, 41(1), 17–47, DOI:10.1016/j.csr.2012.03.015 (2012a).CrossRefGoogle Scholar
  17. 17.
    Dietrich, J.C., Tanaka, S., Westerink, J.J., Dawson, C.N., Luettich Jr, R.A., Zijlema, M., Holthuijsen, L.H., Smith, J.M., Westerink, L.G., Westerink, H.J. Performance of the Unstructured-Mesh, SWAN + ADCIRC Model in Computing Hurricane Waves and Surge. Journal of Scientific Computing, 52(2), 468–497, DOI:10.1007/s10915-011-9555-6 (2012b).Google Scholar
  18. 18.
    Fleming, J.G., Fulcher, C., Luettich Jr., R.A., Estrade, B., Allen, G., and Winer, H. A Real Time Storm Surge Forecasting System using ADCIRC. Proceedings of Estuarine and Coastal Modeling X, Spaulding, M.L. (ed.), ASCE, 373–392 (2008).Google Scholar
  19. 19.
    Garratt, J.R. Review of drag coefficients over oceans and continents. Monthly Weather Review, 105, 915–929 (1977).CrossRefGoogle Scholar
  20. 20.
    Holland, G.J. An analytical model of the wind and pressure proles in hurricanes. Monthly Weather Review, 108, 1212–1218 (1980).CrossRefGoogle Scholar
  21. 21.
    Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Scientific Computing, 20(1), 359–392 (1999).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kennedy, A.B., Gravois, U., Zachry, B.C., Westerink, J.J., Hope, M.E., Dietrich, J.C., Powell, M.D., Cox, A.T., Luettich Jr., R.A., and Dean, R.G.. Origin of the Hurricane Ike Forerunner Surge. Geophysical Research Letters, 38, L08608, DOI 10.1029/2011GL047090 (2011).Google Scholar
  23. 23.
    Kolar, R.L., Westerink, J.J., Cantekin, M.E., and Blain, C.A. Aspects of nonlinear simulations using shallow water models based on the wave continuity equations. Computers and Fluids, 23(3), 1–24 (1994).Google Scholar
  24. 24.
    Le Provost, C., Lyard, F., Molines, J., Genco, M., and Rabilloud, F. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set. Journal of Geophysical Research, 103, 5513–5529, (1998).CrossRefGoogle Scholar
  25. 25.
    Luettich Jr., R.A., and Westerink, J.J. Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.XX, http://adcirc.org/adcirc_theory_2004_12_08.pdf (2004).
  26. 26.
    Martyr, R.C., Dietrich, J.C., Westerink, J.J., Kerr, P.C., Dawson, C.N., Smith, J.M., Pourtaheri, H., Powell, N., van Ledden, M., Tanaka, S., Roberts, H.J., Westerink, L.G., and Westerink, H.J. Simulating Hurricane Storm Surge in the Lower Mississippi River under Varying Flow Conditions. Journal of Hydraulic Engineering, 139(5), 492–501, DOI: 10.1061/(ASCE)HY.1943-7900.0000699 (2013).Google Scholar
  27. 27.
    Mattocks, C., and Forbes, C. A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Modelling, 25, 95–119 (2008).CrossRefGoogle Scholar
  28. 28.
    Mukai, A., Westerink, J.J., Luettich Jr., R.A., and Mark, D. Eastcoast 2001: A tidal constituent database for the Western North Atlantic, Gulf of Mexico and Caribbean Sea. Technical Report ERDC/CHL TR-02-24, U.S. Army Corps of Engineers, 201pp., (2002).Google Scholar
  29. 29.
    Pasch, R., and Roberts, D. (2012). Hurricane Isaac Tropical Cyclone Position Estimate. National Hurricane Center, August 28, http://www.nhc.noaa.gov/archive/2012/al09/al092012.posest.08290400.shtml.
  30. 30.
    Pasch, R., and Roberts, J. (2012). Hurricane Isaac Tropical Cyclone Position Estimate. National Hurricane Center, August 29, http://www.nhc.noaa.gov/archive/2012/al09/al092012.posest.08290758.shtml.
  31. 31.
    Powell, M.D., Vickery, P.J., and Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, March 20, 279–283 (2003).Google Scholar
  32. 32.
    Powell, M.D. Drag Coefficient Distribution and Wind Speed Dependence in Tropical Cyclones. Final Report to the National Oceanic and Atmospheric Administration (NOAA) Joint Hurricane Testbed (JHT) Program (2006).Google Scholar
  33. 33.
    Seahorse Coastal Consulting (2012a). The ASGS Developer’s Guide 2011. Available online at: http://www.seahorsecoastal.com/ASGSDevGuide2011.pdf.
  34. 34.
    Seahorse Coastal Consulting (2012b). The ASGS Operator’s Guide 2011. Available online at: http://www.seahorsecoastal.com/ASGSOperatorsGuide2011.pdf.
  35. 35.
    Stelling, G.S., and Leendertse, J.J. Approximation of convective processes by cyclic AOI methods. Proceedings of the 2nd international conference on estuarine and coastal modeling, ASCE Tampa, Florida, 771–782 (1992).Google Scholar
  36. 36.
    Tanaka, S., Bunya, S., Westerink, J.J., Dawson, C.N., and Luettich Jr., R.A. Scalability of an Unstructured Grid Continuous Galerkin Based Hurricane Storm Surge Model. Journal of Scientific Computing, 46, 329–358 (2011).MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Wessel, P., and Smith, W.H.F. Free software helps map and display data, EOS Trans. AGU, 72, 441 (1991).Google Scholar
  38. 38.
    Westerink, J. J., Luettich Jr., R.A., and Scheffner, N.W. ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries, Report 3: Development of a tidal constituent database for the western North Atlantic and Gulf of Mexico. Technical Report DRP 92-6, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS (1993).Google Scholar
  39. 39.
    Westerink, J.J., Luettich Jr., R.A., and Muccino, J.C. Modeling tides in the western North Atlantic using unstructured graded grids. Tellus 46A, 178–199 (1994).Google Scholar
  40. 40.
    Westerink, J.J., Luettich Jr., R.A., Feyen, J.C., Atkinson, J.H., Dawson, C.N., Roberts, H.J., Powell, M.D., Dunion, J.P., Kubatko, E.J., Pourtaheri, H. A Basin to Channel Scale Unstructured Grid Hurricane Storm Surge Model Applied to Southern Louisiana. Monthly Weather Review, 136, 3, 833–864 (2008).CrossRefGoogle Scholar
  41. 41.
    Zijlema, M. Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57, 267–277 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. C. Dietrich
    • 1
  • C. N. Dawson
    • 1
  • J. M. Proft
    • 1
  • M. T. Howard
    • 2
  • G. Wells
    • 2
  • J. G. Fleming
    • 3
  • R. A. LuettichJr.
    • 4
  • J. J. Westerink
    • 5
  • Z. Cobell
    • 6
  • M. Vitse
    • 1
  • H. Lander
    • 7
  • B. O. Blanton
    • 7
  • C. M. Szpilka
    • 8
  • J. H. Atkinson
    • 6
  1. 1.Institute for Computational Engineering and SciencesUniversity of Texas at AustinAustinUSA
  2. 2.Center for Space ResearchUniversity of Texas at AustinAustinUSA
  3. 3.Seahorse Coastal ConsultingMorehead CityUSA
  4. 4.Institute of Marine SciencesUniversity of North Carolina at Chapel HillChapel HillUSA
  5. 5.Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameSouth BendUSA
  6. 6.Arcadis Inc.DenverUSA
  7. 7.Renaissance Computing InstituteUniversity of North Carolina at Chapel HillChapel HillUSA
  8. 8.School of Civil Engineering and Environmental ScienceUniversity of OklahomaNormanUSA

Personalised recommendations