Skip to main content

Case Studies

  • Chapter
  • First Online:
Solar Based Hydrogen Production Systems

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

In this section, some case studies are presented to analyze the performance of some solar hydrogen production systems on the basis of their exergy and energy efficiencies, sustainability, and environmental impact. The section is subdivided into three parts: first, exergy and energy analysis; second, the sustainability of different systems; and third, the environmental impact of a natural gas-based hydrogen production system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yilanci A, Dincer I, Ozturk HK (2009) A review on solar–hydrogen/fuel cell hybrid energy systems for stationary applications. Prog Energy Combust Sci 35(3):231–244

    Article  Google Scholar 

  2. Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energy 37:1954–1971

    Article  Google Scholar 

  3. Giaconia A, de Falco M, Caputo G, Grena R, Tarquini P, Marrelli L (2008) Solar steam reforming of natural gas for hydrogen production using molten salt heat carriers. Published online in Wiley InterScience (www.interscience.wiley.com). doi: 10.1002/aic.11510

  4. Tyagi SK, Wang S, Singhal MK, Kaushik SC, Park SR (2007) Exergy analysis and parametric study of concentrating type solar collectors. Int J Therm Sci 46:1304–1310

    Article  Google Scholar 

  5. Crouse WH, Anglin DL (1985) Automotive mechanics, 3rd edn. McGraw-Hill, New York, pp 375–385

    Google Scholar 

  6. Toolbox-The Engineering Toolbox (2010) http://www.engineeringtoolbox.com/overall-heat-transfer-coefficient-d_434.html. Accessed May 2010

  7. Joshi AS, Dincer I, Reddy BV (2010) Solar hydrogen production: a comparative performance assessment. Int J Hydrogen Energy 36 doi: 10.1016/j.ijhydene.2010.11.122

  8. Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55

    Article  Google Scholar 

  9. Dincer I, Balta MT (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–127

    Article  Google Scholar 

  10. Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Lu L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011) Clean hydrogen production with the Cu-Cl cycle. Progress of international consortium. II: Simulations, thermochemical data and materials. Int J Hydrogen Energy 36:15486–15501

    Article  Google Scholar 

  11. Ozbilen A, Dincer I, Naterer GF, Aydin M (2012) Role of hydrogen storage in renewable energy management for Ontario. Int J Hydrogen Energy 37:7343–7354

    Article  Google Scholar 

  12. Boehm R, Chen Y, Earl B, Hsieh S, Moujaes S (2003) H2 technology survey. UNLV program, University of Nevada Las Vegas, Center for Energy Research, November 25. www.unlv.edu

  13. Ozbilen A, Dincer I, Rosen MA (2011) Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu–Cl cycle: a parametric study. Int J Hydrogen Energy 36:9514–9528

    Article  Google Scholar 

  14. Ozbilen A, Dincer I, Rosen MA (2012) Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu-Cl cycles. J Clean Prod 33:202–216

    Article  Google Scholar 

  15. Lenzen M (1999) Greenhouse gas analysis of solar-thermal electricity generation. Solar Energy 65:353–368

    Article  Google Scholar 

  16. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge

    Google Scholar 

  17. Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energy 31:939–944

    Article  Google Scholar 

  18. Giaconia A, Sau S, Felici C, Tarquini P, Karaginnakis G (2011) Hydrogen production via sulfur-based thermochemical cycles. Part 2: Performance evaluation of Fe2O3-based catalysts for the sulfuric acid decomposition step. Int J Hydrogen Energy 36:6496–6509

    Article  Google Scholar 

  19. Aghahosseinin S, Dincer I, Naterer G (2011) Integrated gasification and Cu-Cl cycle for trigeneration of hydrogen, steam and electricity. Int J Hydrogen Energy 36:2845–2854

    Article  Google Scholar 

  20. Naterer GF, Suppiah S, Stilberg L, Lewis M et al (2011) Clean hydrogen production with the Cu-Cl cycle. Progress of international consortium. II. Simulations, thermochemical data and materials. Int J Hydrogen Energy 36:15486–501

    Article  Google Scholar 

  21. Naterer GF, Suppiah S, Stilberg L, Lewis M et al (2011) Clean hydrogen production with the Cu-Cl cycle. Progress of international consortium. I. Experimental unit operations. Int J Hydrogen Energy 36:15472–15485

    Article  Google Scholar 

  22. Ferrandon MS, Lewis MA, Tatterson DF, Gross A et al (2010) Hydrogen production by the Cu–Cl thermochemical cycle: investigation of the key step of hydrolysing CuCl2 to Cu2OCl2 and HCl using a spray reactor. Int J Hydrogen Energy 35:992–1000

    Article  Google Scholar 

  23. Thomas LG, Nelson AK (2010) Predicting efficiency of solar powered hydrogen generation using photovoltaic electrolysis devices. Int J Hydrogen Energy 35:900–911

    Article  Google Scholar 

  24. Ratlamwala TAH, Gadalla MA, Dincer I (2011) Performance assessment of an integrated PV/T and triple effect cooling system for hydrogen and cooling production. Int J Hydrogen Energy 36:11282–11291

    Article  Google Scholar 

  25. Ratlamwala TAH, Dincer I (2012) Energy and exergy analyses of a Cu–Cl cycle based integrated system for hydrogen production. Chem Eng Sci 84:564–573

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Dincer, I., Joshi, A.S. (2013). Case Studies. In: Solar Based Hydrogen Production Systems. SpringerBriefs in Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7431-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7431-9_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7430-2

  • Online ISBN: 978-1-4614-7431-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics