Histopathology of Atherosclerosis Progression: What Imagers Need to Know

  • Masataka Nakano
  • Elena Ladich
  • Renu Virmani


Atherosclerosis is a pathologically diverse disease with heterogeneous mechanisms of progression. Irreversible atherosclerotic plaques begin with smooth muscle cell-rich lipid pool lesions referred to as pathologic intimal thickening. It is reported that invasion of lipid pools by lesional macrophages leads to the development of more advanced fibroatheroma distinguished by localized areas of necrotic core. Key morphologic components that determine plaque vulnerability include plaque volume and remodeling, necrotic core size, and inflammatory invasion of the fibrous cap mainly by macrophages. Although the death of macrophages by apoptosis defines early necrosis, other factors such as intraplaque hemorrhage and defective clearance of cell debris are thought to result in necrotic core expansion and plaque instability. Free hemoglobin from extravasated red blood cells provides a viable source of oxidative damage and further recruitment of inflammatory cells. Intraplaque hemorrhage is associated with an increase in vasa vasorum both in the adventitia and in the intima. It has only recently been recognized that their identification might help reduce the incidence of sudden coronary death and acute myocardial infarction. Although much progress has been made in the understanding of atherosclerotic progression, we need better tools to identify the high-risk plaques in living patients with long-term follow-up to determine which lesions to be treated by interventional means or pharmacologically.


Plaque Rupture Necrotic Core Percutaneous Coronary Intervention Luminal Narrowing Stable Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acute coronary syndrome


American Heart Association


Acute myocardial infarction


Chronic total occlusion


Cardiovascular disease








Healed plaque rupture


Intercellular adhesion molecule 1


Matrix metalloprotease




Nitric oxide


Percutaneous coronary intervention


Pathologic intimal thickening


Sudden coronary death


Scanning electron microscopy


Smooth muscle cell


Thin-cap fibroatheroma


Tissue factor


Vascular cell adhesion molecule 1


  1. 1.
    Stary HC, Blankenhorn DH, Chandler AB et al (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 12:120–134PubMedCrossRefGoogle Scholar
  2. 2.
    Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, american heart association. Arterioscler Thromb Vasc Biol 15:1512–1531PubMedCrossRefGoogle Scholar
  3. 3.
    Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275PubMedCrossRefGoogle Scholar
  4. 4.
    Ikari Y, McManus BM, Kenyon J et al (1999) Neonatal intima formation in the human coronary artery. Arterioscler Thromb Vasc Biol 19:2036–2040PubMedCrossRefGoogle Scholar
  5. 5.
    Orekhov AN, Andreeva ER, Mikhailova IA et al (1998) Cell proliferation in normal and atherosclerotic human aorta: proliferative splash in lipid-rich lesions. Atherosclerosis 139:41–48PubMedCrossRefGoogle Scholar
  6. 6.
    Davies PF, Civelek M, Fang Y et al (2010) Endothelial heterogeneity associated with regional athero-susceptibility and adaptation to disturbed blood flow in vivo. Semin Thromb Hemost 36:265–275PubMedCrossRefGoogle Scholar
  7. 7.
    Wang L, Karlsson L, Moses S et al (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40:841–853PubMedCrossRefGoogle Scholar
  8. 8.
    Aikawa M, Rabkin E, Okada Y et al (1998) Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 97:2433–2444PubMedCrossRefGoogle Scholar
  9. 9.
    Velican C (1981) A dissecting view on the role of the fatty streak in the pathogenesis of human atherosclerosis: culprit or bystander? Med Interne 19:321–337PubMedGoogle Scholar
  10. 10.
    Nakashima Y, Wight TN, Sueishi K (2008) Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res 79:14–23PubMedCrossRefGoogle Scholar
  11. 11.
    Hoff HF, Bradley WA, Heideman CL et al (1979) Characterization of low density lipoprotein-like particle in the human aorta from grossly normal and atherosclerotic regions. Biochim Biophys Acta 573:361–374PubMedCrossRefGoogle Scholar
  12. 12.
    Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561PubMedCrossRefGoogle Scholar
  13. 13.
    Merrilees MJ, Beaumont BW, Braun KR et al (2011) Neointima formed by arterial smooth muscle cells expressing versican variant v3 is resistant to lipid and macrophage accumulation. Arterioscler Thromb Vasc Biol 31:1309–1316PubMedCrossRefGoogle Scholar
  14. 14.
    Preston Mason R, Tulenko TN, Jacob RF (2003) Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. Biochim Biophys Acta 1610:198–207PubMedCrossRefGoogle Scholar
  15. 15.
    Kockx MM, De Meyer GR, Muhring J et al (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97:2307–2315PubMedCrossRefGoogle Scholar
  16. 16.
    Nakashima Y, Fujii H, Sumiyoshi S et al (2007) Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 27:1159–1165PubMedCrossRefGoogle Scholar
  17. 17.
    Cushing SD, Berliner JA, Valente AJ et al (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 87:5134–5138PubMedCrossRefGoogle Scholar
  18. 18.
    Klouche M, Gottschling S, Gerl V et al (1998) Atherogenic properties of enzymatically degraded LDL: selective induction of mcp-1 and cytotoxic effects on human macrophages. Arterioscler Thromb Vasc Biol 18:1376–1385PubMedCrossRefGoogle Scholar
  19. 19.
    Tabas I (2000) Cholesterol and phospholipid metabolism in macrophages. Biochim Biophys Acta 1529:164–174PubMedCrossRefGoogle Scholar
  20. 20.
    Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375PubMedCrossRefGoogle Scholar
  21. 21.
    Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822:267–287PubMedCrossRefGoogle Scholar
  22. 22.
    Tulenko TN, Chen M, Mason PE et al (1998) Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J Lipid Res 39:947–956PubMedGoogle Scholar
  23. 23.
    Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325PubMedCrossRefGoogle Scholar
  24. 24.
    Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264PubMedCrossRefGoogle Scholar
  25. 25.
    Sluimer JC, Kolodgie FD, Bijnens AP et al (2009) Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 53:1517–1527PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang Y, Cliff WJ, Schoefl GI et al (1993) Plasma protein insudation as an index of early coronary atherogenesis. Am J Pathol 143:496–506PubMedGoogle Scholar
  27. 27.
    Michel JB, Thaunat O, Houard X et al (2007) Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 27:1259–1268PubMedCrossRefGoogle Scholar
  28. 28.
    Tavora F, Kutys R, Li L et al (2010) Adventitial lymphocytic inflammation in human coronary arteries with intimal atherosclerosis. Cardiovasc Pathol 19:e61–e68PubMedCrossRefGoogle Scholar
  29. 29.
    Davis GE (1992) The mac-1 and p150,95 beta 2 integrins bind denatured proteins to mediate leukocyte cell-substrate adhesion. Exp Cell Res 200:242–252PubMedCrossRefGoogle Scholar
  30. 30.
    Finn AV, Nakano M, Polavarapu R et al (2012) Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 59:166–177PubMedCrossRefGoogle Scholar
  31. 31.
    Rother RP, Bell L, Hillmen P et al (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293:1653–1662PubMedCrossRefGoogle Scholar
  32. 32.
    Boyle JJ, Harrington HA, Piper E et al (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 174:1097–1108PubMedCrossRefGoogle Scholar
  33. 33.
    Wagener FA, van Beurden HE, von den Hoff JW et al (2003) The heme-heme oxygenase system: a molecular switch in wound healing. Blood 102:521–528PubMedCrossRefGoogle Scholar
  34. 34.
    Burke AP, Farb A, Malcom GT et al (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282PubMedCrossRefGoogle Scholar
  35. 35.
    Kolodgie FD, Burke AP, Farb A et al (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 16:285–292PubMedCrossRefGoogle Scholar
  36. 36.
    Burke AP, Farb A, Malcom GT et al (1999) Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 281:921–926PubMedCrossRefGoogle Scholar
  37. 37.
    Sukhova GK, Schonbeck U, Rabkin E et al (1999) Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99:2503–2509PubMedCrossRefGoogle Scholar
  38. 38.
    Gijsen FJ, Wentzel JJ, Thury A et al (2008) Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Heart Circ Physiol 295:H1608–H1614PubMedCrossRefGoogle Scholar
  39. 39.
    Kolodgie FD, Narula J, Burke AP et al (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157:1259–1268PubMedCrossRefGoogle Scholar
  40. 40.
    Vengrenyuk Y, Carlier S, Xanthos S et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA 103:14678–14683PubMedCrossRefGoogle Scholar
  41. 41.
    Silvain J, Collet JP, Nagaswami C et al (2011) Composition of coronary thrombus in acute myocardial infarction. J Am Coll Cardiol 57:1359–1367PubMedCrossRefGoogle Scholar
  42. 42.
    Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671PubMedCrossRefGoogle Scholar
  43. 43.
    van der Wal AC, Becker AE, van der Loos CM et al (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44PubMedCrossRefGoogle Scholar
  44. 44.
    Farb A, Burke AP, Tang AL et al (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93:1354–1363PubMedCrossRefGoogle Scholar
  45. 45.
    Kramer MC, van der Wal AC, Koch KT et al (2009) Histopathological features of aspirated thrombi after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. PLoS One 4:e5817PubMedCrossRefGoogle Scholar
  46. 46.
    Kolodgie FD, Burke AP, Farb A et al (2002) Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 22:1642–1648PubMedCrossRefGoogle Scholar
  47. 47.
    Ferrante G, Nakano M, Prati F et al (2010) High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation 122:2505–2513PubMedCrossRefGoogle Scholar
  48. 48.
    Schwartz RS, Burke A, Farb A et al (2009) Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 54:2167–2173PubMedCrossRefGoogle Scholar
  49. 49.
    Mann J, Davies MJ (1999) Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 82:265–268PubMedGoogle Scholar
  50. 50.
    Burke AP, Kolodgie FD, Farb A et al (2001) Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103:934–940PubMedCrossRefGoogle Scholar
  51. 51.
    Burke AP, Farb A, Malcom G et al (2001) Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am Heart J 141:S58–S62PubMedCrossRefGoogle Scholar
  52. 52.
    Burke AP, Taylor A, Farb A et al (2000) Coronary calcification: insights from sudden coronary death victims. Z Kardiol 89(Suppl 2):49–53PubMedCrossRefGoogle Scholar
  53. 53.
    Watson KE, Abrolat ML, Malone LL et al (1997) Active serum vitamin d levels are inversely correlated with coronary calcification. Circulation 96:1755–1760PubMedCrossRefGoogle Scholar
  54. 54.
    Keso T, Perola M, Laippala P et al (2001) Polymorphisms within the tumor necrosis factor locus and prevalence of coronary artery disease in middle-aged men. Atherosclerosis 154:691–697PubMedCrossRefGoogle Scholar
  55. 55.
    Proudfoot D, Shanahan CM (2001) Biology of calcification in vascular cells: intima versus media. Herz 26:245–251PubMedCrossRefGoogle Scholar
  56. 56.
    Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536PubMedCrossRefGoogle Scholar
  57. 57.
    Davies MJ, Thomas A (1984) Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med 310:1137–1140PubMedCrossRefGoogle Scholar
  58. 58.
    El Fawal MA, Berg GA, Wheatley DJ et al (1987) Sudden coronary death in glasgow: nature and frequency of acute coronary lesions. Br Heart J 57:329–335PubMedCrossRefGoogle Scholar
  59. 59.
    Davies MJ, Bland JM, Hangartner JR et al (1989) Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J 10:203–208PubMedGoogle Scholar
  60. 60.
    Burke AP, Farb A, Malcom GT et al (1998) Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 97:2110–2116PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.CVPath Institute, Inc.GaithersburgUSA

Personalised recommendations