Carotid Artery Recognition System(CARS): A Comparison of Three Automated Paradigms for Ultrasound Images

  • Filippo Molinari
  • Kristen Mariko Meiburger
  • U. Rajendra Acharya
  • William Liboni
  • Andrew Nicolaides
  • Jasjit S. Suri


The development of completely automated techniques for arterial wall segmentation and intima–media thickness measurement requires the recognition of the artery in the image frame. Conceptually, automated techniques can be thought of as the combination of two cascades stages: artery recognition and wall segmentation. In this chapter we show three carotid artery recognition systems (CARS) that are fully automated. CARS is a generalized framework for carotid artery recognition in ultrasound images, which can be easily adapted to almost any B-Mode ultrasound vascular image.

The first technique is based on first-order derivative Gaussian edge analysis (CARSgd). The second method is based on an integrated approach (CARSia) that combines image feature extractions, fitting, and classification. The third strategy is based on signal analysis (CARSsa). The output of all the three paradigms provides tracing of the far adventitial (ADF).

The complete CARS system (consisting of the three strategies named CARSgd, CARSia, and CARSsa) was on a dataset of 365 longitudinal B-Mode carotid images, acquired by different sonographers. Performance evaluation of the carotid recognition process was done in three ways: (1) visual inspection by experts; (2) by measuring the Hausdorff Distance (HD) between far adventitial (ADF) and the manually traced ADF, and (3) by measuring the HD between ADF and the lumen–intima (GTLI) and media–adventitia (GTMA) borders of the arterial walls.

The results showed the CARS accuracy in locating the artery in the ultrasound image. The average HD between ADF and the manual ADF was 0.76 ± 0.73 mm for CARSgd, 1.02 ± 2.03 mm for CARSia, and 2.18 ± 3.10 mm for CARSsa. The average HD between GTLI and ADF for CARSgd, CARSia, and CARSsa was 2.16 ± 1.16 mm, 2.71 ± 2.89 mm, and 2.66 ± 1.52 mm, respectively. The average HD between ADF and GTMA for CARSgd, CARSia, and CARSsa was 1.54 ± 1.19 mm, 1.86 ± 2.66 mm, and 1.95 ± 1.64 mm, respectively. Considering a maximum distance of 50 pixels (about 3 mm), CARSgd showed an identification accuracy of 100%, CARSia of 92%, and CARSsa of 96%. These identification accuracies were confirmed by visual inspection.

All the three systems work on MATLAB, Windows OS, and on a PC-based cross-platform medical application written in Java called AtheroEdge™ with 1 s per image. CARSgd showed very accurate ADF profiles coupled with a low computational burden and without the need for specific tuning. It can be thought of as a reference technique for carotid localization, to be used in automated intima–media thickness measurement strategies.


Hausdorff Distance Seed Point Adventitia Layer Lumen Region Wall Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amato M, Montorsi P, Ravani A, Oldani E, Galli S, Ravagnani PM, Tremoli E, Baldassarre D (2007) Carotid intima-media thickness by B-mode ultrasound as surrogate of coronary atherosclerosis: correlation with quantitative coronary angiography and coronary intravascular ultrasound findings. Eur Heart J 28(17):2094–2101PubMedCrossRefGoogle Scholar
  2. 2.
    Rosvall M, Janzon L, Berglund G, Engstrom G, Hedblad B (2005) Incidence of stroke is related to carotid IMT even in the absence of plaque. Atherosclerosis 179(2):325–331PubMedCrossRefGoogle Scholar
  3. 3.
    Saba L, Mallarini G (2009) A comparison between NASCET and ECST methods in the study of carotids evaluation using multi-detector-row CT angiography. Eur J Radiol 76(1):42–47PubMedCrossRefGoogle Scholar
  4. 4.
    Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Fatar M, Hernandez Hernandez R, Jaff M, Kownator S, Prati P, Rundek T, Sitzer M, Schminke U, Tardif JC, Taylor A, Vicaut E, Woo KS, Zannad F, Zureik M (2007) Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 23(1):75–80PubMedCrossRefGoogle Scholar
  5. 5.
    Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Desvarieux M, Ebrahim S, Fatar M, Hernandez Hernandez R, Kownator S, Prati P, Rundek T, Taylor A, Bornstein N, Csiba L, Vicaut E, Woo KS, Zannad F (2004) Mannheim intima-media thickness consensus. Cerebrovasc Dis 18(4):346–349PubMedCrossRefGoogle Scholar
  6. 6.
    Saba L, Montisci R, Molinari F, Tallapally N, Zeng G, Mallarini G, Suri JS (2012) Comparison between manual and automated analysis for the quantification of carotid wall by using sonography. A validation study with CT. Eur J Radiol 81(5):911–918PubMedCrossRefGoogle Scholar
  7. 7.
    van der Meer IM, Bots ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC (2004) Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation 109(9):1089–1094PubMedCrossRefGoogle Scholar
  8. 8.
    Molinari F, Meiburger KM, Zeng G, Acharya RU, Liboni W, Nicolaides A, Suri JS (2012) Carotid artery recognition system: a comparison of three automated paradigms for ultrasound images. Med Phys 39(1):378–391PubMedCrossRefGoogle Scholar
  9. 9.
    Molinari F, Liboni W, Giustetto P, Badalamenti S, Suri JS (2009) Automatic computer-based tracings (ACT) in longitudinal 2-D ultrasound images using different scanners. J Mech Med Biol 9(4):481–505CrossRefGoogle Scholar
  10. 10.
    Molinari F, Zeng G, Suri JS (2010) A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comput Methods Programs Biomed 100:201–221PubMedCrossRefGoogle Scholar
  11. 11.
    Polak JF, Funk LC, O’Leary DH (2011) Inter-reader differences in common carotid artery intima-media thickness: implications for cardiovascular risk assessment and vascular age determination. J Ultrasound Med 30(7):915–920PubMedGoogle Scholar
  12. 12.
    Touboul PJ, Vicaut E, Labreuche J, Belliard JP, Cohen S, Kownator S, Pithois-Merli I (2005) Design, baseline characteristics and carotid intima-media thickness reproducibility in the PARC study. Cerebrovasc Dis 19(1):57–63PubMedCrossRefGoogle Scholar
  13. 13.
    de Groot E, van Leuven SI, Duivenvoorden R, Meuwese MC, Akdim F, Bots ML, Kastelein JJ (2008) Measurement of carotid intima-media thickness to assess progression and regression of atherosclerosis. Nat Clin Pract Cardiovasc Med 5(5): 280–288PubMedCrossRefGoogle Scholar
  14. 14.
    Delsanto S, Molinari F, Giustetto P, Liboni W, Badalamenti S (2005) CULEX-completely user-independent layers extraction: ultrasonic carotid artery images segmentation. Conf Proc IEEE Eng Med Biol Soc 6:6468–6471PubMedGoogle Scholar
  15. 15.
    Delsanto S, Molinari F, Giustetto P, Liboni W, Badalamenti S, Suri JS (2007) Characterization of a completely user-independent algorithm for carotid artery segmentation in 2-D ultrasound images. IEEE Trans Instrum Meas 56(4):1265–1274CrossRefGoogle Scholar
  16. 16.
    Molinari F, Zeng G, Suri JS (2010) An integrated approach to computer-based automated tracing and its validation for 200 common carotid arterial wall ultrasound images: a new technique. J Ultrasound Med 29:399–418PubMedGoogle Scholar
  17. 17.
    Molinari F, Zeng G, Suri JS (2010) Intima-media thickness: setting a standard for completely automated method for ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 57(5):1112–1124PubMedCrossRefGoogle Scholar
  18. 18.
    Molinari F, Pattichis C, Zeng G, Saba L, Acharya U, Sanfilippo R, Nicolaides A, Suri J (2012) Completely automated multi-resolution edge snapper (CAMES) inverted question mark a new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database. IEEE Trans Image Process 21(3):1211–1222PubMedCrossRefGoogle Scholar
  19. 19.
    Molinari F, Zeng G, Suri JS (2010) Greedy technique and its validation for fusion of two segmentation paradigms leads to an accurate intima-media thickness measure in plaque carotid arterial ultrasound. J Vasc Ultrasound 34(2):63–73Google Scholar
  20. 20.
    Rossi AC, Brands PJ, Hoeks AP (2008) Automatic recognition of the common carotid artery in longitudinal ultrasound B-mode scans. Med Image Anal 12(6):653–665PubMedCrossRefGoogle Scholar
  21. 21.
    Golemati S, Stoitsis J, Sifakis EG, Balkizas T, Nikita KS (2007) Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med Biol 33(12):1918–1932PubMedCrossRefGoogle Scholar
  22. 22.
    Zhen Y, Jasjit S, Yajie S, Janer R (2005) Four image interpolation techniques for ultrasound breast phantom data acquired using Fischer’s full field digital mammography and ultrasound system (FFDMUS): a comparative approach. In: IEEE international conference on image processing, 2005. ICIP 2005Google Scholar
  23. 23.
    Fan L, Santago P, Riley W, Herrington DM (2001) An adaptive template-matching method and its application to the boundary detection of brachial artery ultrasound scans. Ultrasound Med Biol 27(3):399–408PubMedCrossRefGoogle Scholar
  24. 24.
    Loizou CP, Pattichis CS, Christodoulou CI, Istepanian RSH, Pantziaris M, Nicolaides A (2005) Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrason Ferroelectr Freq Control 52(10):1653–1669PubMedCrossRefGoogle Scholar
  25. 25.
    Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2006) Quality evaluation of ultrasound imaging in the carotid artery based on normalization and speckle reduction filtering. Med Biol Eng Comput 44(5):414–426PubMedCrossRefGoogle Scholar
  26. 26.
    Delsanto S, Molinari F, Liboni W, Giustetto P, Badalamenti S, Suri JS (2006) User-independent plaque characterization and accurate IMT measurement of carotid artery wall using ultrasound. Conf Proc IEEE Eng Med Biol Soc 1:2404–2407PubMedGoogle Scholar
  27. 27.
    Molinari F, Delsanto S, Giustetto P, Liboni W, Badalamenti S, Suri JS (2008) User-independent plaque segmentation and accurate intima-media thickness measurement of carotid artery wall using ultrasound. In: Suri JS, Chang RF, Kathuria C, Molinari F, Fenster A (eds) Advances in diagnostic and therapeutic ultrasound imaging. Artech House, Norwood, MA, pp 111–140Google Scholar
  28. 28.
    Molinari F, Liboni W, Giustetto P, Pavanelli E, Marsico A, Suri J (2010) Carotid plaque characterization with contrast-enhanced ultrasound imaging and its histological validation. J Vasc Ultrasound 34(4):1–10Google Scholar
  29. 29.
    Molinari F, Liboni W, Pantziaris M, Suri JS (2011) CALSFOAM—completed automated local statistics based first order absolute moment” for carotid wall recognition, segmentation and IMT measurement: validation and bench-marking on a 300 patient database. Int Angiol 30(3):227–241PubMedGoogle Scholar
  30. 30.
    Molinari F, Liboni W, Pavanelli E, Giustetto P, Badalamenti S, Suri JS (2007) Accurate and automatic carotid plaque characterization in contrast enhanced 2-D ultrasound images. Conf Proc IEEE Eng Med Biol Soc 2007:335–338PubMedGoogle Scholar
  31. 31.
    Molinari F, Zeng G, Suri J (2010) Inter-greedy technique for fusion of different segmentation strategies leading to high-performance carotid IMT measurement in ultrasound images. J Med Syst 35(5):905–919PubMedCrossRefGoogle Scholar
  32. 32.
    Suri JS, Kathuria C, Molinari F (Eds.) (2011) Atherosclerosis disease management. Springer, New YorkGoogle Scholar
  33. 33.
    Rocha R, Campilho A, Silva J, Azevedo E, Santos R (2011) Segmentation of ultrasound images of the carotid using RANSAC and cubic splines. Comput Methods Programs Biomed 101(1):94–106PubMedCrossRefGoogle Scholar
  34. 34.
    Rocha R, Campilho A, Silva J, Azevedo E, Santos R (2010) Segmentation of the carotid intima-media region in B-Mode ultrasound images. Image Vis Comput 28(4):614–625CrossRefGoogle Scholar
  35. 35.
    Demi M, Paterni M, Benassi A (2000) The first absolute central moment in low-level image processing. Comput Vis Image Underst 80(1):57–87CrossRefGoogle Scholar
  36. 36.
    Faita F, Gemignani V, Bianchini E, Giannarelli C, Ghiadoni L, Demi M (2008) Real-time measurement system for evaluation of the carotid intima-media thickness with a robust edge operator. J Ultrasound Med 27(9):1353–1361PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Filippo Molinari
    • 1
  • Kristen Mariko Meiburger
    • 1
  • U. Rajendra Acharya
    • 2
    • 3
  • William Liboni
    • 4
  • Andrew Nicolaides
    • 5
    • 6
  • Jasjit S. Suri
    • 7
    • 8
  1. 1.Biolab, Department of ElectronicsPolitecnico di TorinoTorinoItaly
  2. 2.Department of Electronics and Computer EngineeringNgee Ann PolytechnicSingaporeSingapore
  3. 3.Department of Biomedical EngineeringFaculty of Engineering, University of MalayaKuala LumpurMalaysia
  4. 4.“Un Passo Insieme” ONLUS FundationValdellatorreTorinoItaly
  5. 5.Vascular Screening and Diagnostic CentreLondonUK
  6. 6.Department of Biological SciencesUniversity of CyprusNicosiaCyprus
  7. 7.Diagnostic and Monitoring DivisionAtheroPoint LLCRosevilleUSA
  8. 8.Department of Biomedical Engineering (Aff.)Idaho State UniversityPocatelloUSA

Personalised recommendations