Skip to main content

Cell Complexes

  • Chapter
  • First Online:
  • 2678 Accesses

Abstract

The role of coordinate systems is to associate to the points of space three numbers, its coordinates. Since we will consider not only points but also lines, surfaces and volumes, we need a reference structure analogous to coordinate systems: these are the cell complexes. They are composed of vertices, edges, faces and cells, i.e. of the four types of space elements. Since a space element can be endowed with one of the two types of orientation, an inner or an outer one, we obtain eight distinct oriented space elements. To represent space elements endowed with an outer orientation, it appears natural to introduce the dual of a cell complex. These eight space elements can be easily organized in a classification diagram.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Isaacson and Keller [99, p. 364].

  2. 2.

    Coxeter [44].

  3. 3.

    Wallace [244, p. 168]; Alexandrov [2].

  4. 4.

    Lefschetz [132, p. 93]; Lefschetz [133, p. 47]; Bourgin [24, p. 17]; Singer and Thorpe [211, p. 101]; Hilton and Wylie [92, p. 64].

  5. 5.

    Cavendish et al. [37]; Frey and Cavendish [76].

  6. 6.

    Also called a Dirichlet complex. See Frey and Cavendish [76].

  7. 7.

    Cavendish et al. [37].

  8. 8.

    Munkres [165, p. 378]; Dubrovin et al. [58, Sect. 7].

  9. 9.

    Klein [114, p. 17].

  10. 10.

    Franz [74, p. 31].

  11. 11.

    Hocking and Young [94, p. 223].

  12. 12.

    Veblen and Whitehead [241, p. 55].

  13. 13.

    A flow is uniform in a region when the velocity of all particles is invariant under translation.

  14. 14.

    The direct algebraic formulation of physical laws is the starting point of the cell method; see Tonti [230232, 234] and the papers cited on the Web site discretephysics.dicar.units.it.

References

  1. Alexandrov, P.: Elementary Concepts of Topology. Dover, New York (1961)

    Google Scholar 

  2. Bourgin, D.G.: Modern Algebraic Topology. MacMillan, New York (1963)

    Google Scholar 

  3. Cavendish, J.C., Field, D.A., Frey, W.H.: An approach to automatic three-dimensional finite element mesh generation. Int. J. Numer. Methods Eng. 21, 329–347 (1985)

    Article  MATH  Google Scholar 

  4. Coxeter, H.S.: Regular Polytopes. Dover, New York (1973)

    Google Scholar 

  5. Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Geometria Contemporanea, vol. 3. Editori Riuniti, Rome (Mir Edizioni, Moscow) (1989)

    Google Scholar 

  6. Franz, W.: Algebraic Topology. Harrap, London (1968)

    MATH  Google Scholar 

  7. Frey, W.H., Cavendish, J.C.: Fast Planar Mesh Generation Using the Delaunay Triangulation. General Motors Research Publication, GMR-4555, Warren (1983)

    Google Scholar 

  8. Hilton, P.J., Wylie, S.: Homology Theory: An Introduction to Algebraic Topology. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  9. Hocking, J.G., Young, G.S.: Topology. Addison-Wesley, Reading, MA (1961)

    MATH  Google Scholar 

  10. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)

    MATH  Google Scholar 

  11. Klein, F.: Elementary mathematics from an advanced standpoint: Geometry. 39(3), 201–136 (1948) [Dover, New York]

    Google Scholar 

  12. Lefschetz, S.: Algebraic Topology, vol. XXVII. Colloquium Publications American Mathematical Society, New York (1942)

    MATH  Google Scholar 

  13. Lefschetz, S.: Introduction to Topology. Princeton University Press, Princeton, NJ (1949)

    MATH  Google Scholar 

  14. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley/Westview Press, Reading, MA (1984)

    MATH  Google Scholar 

  15. Singer, I.M., Thorpe, J.A.: Lecture notes on elementary topology and geometry. Springer, New York (1967)

    MATH  Google Scholar 

  16. Tonti, E.: Finite Formulation of the Electromagnetic Field. PIER Prog. Electromagn. Res. 32, 1–42 (2001) [EMW Publishing]

    Google Scholar 

  17. Tonti, E.: A direct discrete formulation of field laws: The cell method. CMES Comput. Model. Eng. Sci. 2(2), 237–258 (2001)

    Google Scholar 

  18. Tonti, E.: Finite formulation of electromagnetic field. IEEE Trans. Magn. 38(2), 333–336 (2002)

    Article  Google Scholar 

  19. Veblen, O., Whitehead, J.H.: The foundations of Differential Geometry. Cambr. Tracts 29, 55–56 (1932)

    Google Scholar 

  20. Wallace, A.W.: An Introduction to Algebraic Topology. Pergamon Press, Oxford (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tonti, E. (2013). Cell Complexes. In: The Mathematical Structure of Classical and Relativistic Physics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7422-7_4

Download citation

Publish with us

Policies and ethics