Advertisement

Terminology Revisited

  • Enzo Tonti
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Sometimes the same symbol is used with different meanings. Let us look at the following two formulas:
$$\displaystyle{ M =\int \rho \,\, \mathrm{d}V,\qquad W = -\int p\,\,\mathrm{d}V.}$$
(2.1)
In the first integral, M denotes the mass, ρ(P) the mass density at a point P and the symbol dV indicates an infinitesimal volume; in the second integral, W denotes the work, p(V ) the pressure and dV indicates an infinitesimal variation of the volume. In  Sect. 5.2 we will distinguish material descriptions from spatial descriptions: in the first integral, V denotes a fixed control volume, typical of a spatial description, whereas in the second integral, V denotes a variable volume, typical of a system description.

Keywords

Electric Field Strength Polar Vector Time Reversal Vector Product Term Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Achenbach, J.D.: Waves Propagation in Elastic Solids. North Holland, Amsterdam (1973)Google Scholar
  2. 2.
    Alexandrov, P.: Elementary Concepts of Topology. Dover, New York (1961)Google Scholar
  3. 3.
    Alexandrov, P.S.: Combinatorial Topology. Dover, New York (1998)MATHGoogle Scholar
  4. 4.
    Alexandrov, P.S.: Topologia Combinatoria. Einaudi, Turin, Italy (1957)Google Scholar
  5. 5.
    Akhiezer, A., Akhiezer, I.: Electromagnetisme et Ondes Electromagnetiques, vol. 3. Mir, Moscow (1988)Google Scholar
  6. 6.
    Aris, R.: Vectors, Tensors and the Basic Equations of fluid Mechanics. Prentice Hall, Englewood Cliffs, NJ (1962)MATHGoogle Scholar
  7. 7.
    Auchmann, B., Kurz, S.: A Geometrically Defined Discrete Hodge Operator on Simplicial Cells. IEEE Trans. Magn. 42(4), 643–646 (2006)Google Scholar
  8. 8.
    Ballentine, L.E.: Quantum Mechanics. World Scientific, Singapore (1998)MATHGoogle Scholar
  9. 9.
    Bashmakova I.G., Smimova G.S.: The Literal Calculus of Viéte and Descartes. Am. Math. Mon. 106(3), 260–263 (1999)Google Scholar
  10. 10.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1977)Google Scholar
  11. 11.
    Becker, R.: Teoria dell’Elettricità, vol. I. Sansoni, Florence, Italy (1949)Google Scholar
  12. 12.
    Benvenuto, E.: An Introduction to the History of Structural Mechanics, Part I, p. 274. Springer, Dordrecht, The Netherlands (1991)Google Scholar
  13. 13.
    Bettini, A.: Elettromagnetismo. Zanichelli, Bologna, Italy (1994)Google Scholar
  14. 14.
    Crawford, F.S. Berkeley physics course. Waves, New York, N.Y. McGraw-Hill, 3, (1968).Google Scholar
  15. 15.
    Billington, E.W., Tate, A.: The Physics of Deformation and Flow. McGraw-Hill, New York (1981)MATHGoogle Scholar
  16. 16.
    Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (1960)Google Scholar
  17. 17.
    Bohm, D., Hiley, B.J., Stuart, A.: On a New Mode of Description in Physics. Int. J. Theor. Phys. 3(3), 171–183 (1970)Google Scholar
  18. 18.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Pergamon, Oxford (1975)Google Scholar
  19. 19.
    Born, M.: Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik. Zeitschrift fur Physik. XXII, 218–224 (1921)Google Scholar
  20. 20.
    Born, M.: Experiment and Theory in Physics. Dover, New York (1956)Google Scholar
  21. 21.
    Bossavit, A.: Électromagnetism en vue de la modélisation. Springer, Paris (1994)Google Scholar
  22. 22.
    Bourbaki, N.: Elements d’histoire des mathématiques. Hermann, Paris (1969)MATHGoogle Scholar
  23. 23.
    Bourbaki, N.: Espaces Vectoriels Topologiques. Springer, Berlin (2007)MATHGoogle Scholar
  24. 24.
    Bourgin, D.G.: Modern Algebraic Topology. MacMillan, New York (1963)Google Scholar
  25. 25.
    Belluzzi, O.: Scienza delle Costruzioni. Zanichelli, Bologna (1966)Google Scholar
  26. 26.
    Blakely, R.J. Potential Theory in Gravity & Magnetic Applications. Cambridge University Press, (1996)Google Scholar
  27. 27.
    Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Relativistic Quantum Theory. Pergamon Press, Oxford (1971)Google Scholar
  28. 28.
    Born, M.: Experiment and Theory in Physics. Dover, NOME CITTA’ (1956)Google Scholar
  29. 29.
    Branin, F.H.Jr.: The algebraic topological basis for network analogies and the vector calculus. In: Symposium on Generalized Networks. Polytechnic Institute of Brooklin, New York (1966)Google Scholar
  30. 30.
    Brillouin, L.: Tensors in Mechanics and Elasticity. Academic, New York (1964)Google Scholar
  31. 31.
    Bruhat, G.: Cours de Physique Generale: Optique. Masson, Paris (1959)Google Scholar
  32. 32.
    Burke, W.L.: Applied Differential Geometry. Cambridge University Press, Cambridge (1985)MATHGoogle Scholar
  33. 33.
    Callen, H.B.: Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley, New York (1960)MATHGoogle Scholar
  34. 34.
    Cartan, E.: Leçons sur la Géometrie des Espaces de Riemann. Gauthier-Villars, Paris (1951)MATHGoogle Scholar
  35. 35.
    Castillo, P., Rieben, R., White, D.: FEMSTER: An object-oriented class library of discrete differential forms. ACM Trans. Math. Softw. 31(4), 425–457 (2005)MathSciNetMATHGoogle Scholar
  36. 36.
    Castillo, P., Koning, J., Rieben, R., White, D.: A discrete differential forms framework for computational electromagnetism. Comput. Model. Eng. Sci. 1(1), 115 (2002)Google Scholar
  37. 37.
    Cavendish, J.C., Field, D.A., Frey, W.H.: An approach to automatic three-dimensional finite element mesh generation. Int. J. Numer. Methods Eng. 21, 329–347 (1985)MATHGoogle Scholar
  38. 38.
    Cebeci, T., Smith, A.M.: Analysis of Turbulent Boundary Layers. Academic, New York (1974)MATHGoogle Scholar
  39. 39.
    Chadwick, P.: Continuum Mechanics, Concise Theory and Problems. Allen & Unwin, London (1976)Google Scholar
  40. 40.
    Chevalley, C.: Fundamental Concepts of Algebra. Academic, New York (1966)Google Scholar
  41. 41.
    Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics, 3rd edn. Springer, Berlin (1993)MATHGoogle Scholar
  42. 42.
    Ciarlet, P.G., Lions, J.L.: Handbook of Numerical Analysis: Special volume, Computational Chemistry, vol. X, p. 123. North-Holland, Amsterdam (2003)Google Scholar
  43. 43.
    Corson, E.M.: Introduction to Tensors, Spinors and Relativistic Wave-Equations. Blackie & Son, London (1955)Google Scholar
  44. 44.
    Coxeter, H.S.: Regular Polytopes. Dover, New York (1973)Google Scholar
  45. 45.
    Dass, T., Sharma, S.K.: Mathematical Methods In Classical And Quantum Physics. Universities Press, India (1998)Google Scholar
  46. 46.
    de Broglie, L.: Elements de Theorie des Quanta et de Mecanique Ondulatoire. Gauthier-Villars, Paris (1959)MATHGoogle Scholar
  47. 47.
    de Broglie, L.: La Thermodynamique de la Particule Isolée. Gauthier-Villars, Paris (1964)Google Scholar
  48. 48.
    de Broglie, L.: Physique et Microphysique. Harper & Brothers, New York (1960)Google Scholar
  49. 49.
    de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)Google Scholar
  50. 50.
    de Broglie, L.: La theorie des particules de spin 1/2. Gauthier-Villars, Paris (1952)Google Scholar
  51. 51.
    Henry, P.G.: Darcy and Other Pioneers in Hydraulics, Philadelphia (2003)Google Scholar
  52. 52.
    De Marchi, G.: Idraulica. 1(I/II). Hoepli, Milan, Italy (1977)Google Scholar
  53. 53.
    Deschamps, G.A.: Electromagnetics and Differential Forms. Proc. IEEE 69(6), 676–696 (1981)Google Scholar
  54. 54.
    Demirel, T.: Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical & Biological Systems. Elsevier Science, Amsterdam (2002)Google Scholar
  55. 55.
    Desbrun, M., Kanso, E., Tong, Y.: Discrete Differential Forms for Computational Modeling. In: Bobenko, I., et al. (eds.) Discrete Differential Geometry, pp. 287–323. Birkhäuser (2008)Google Scholar
  56. 56.
    Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. http://arxiv.org/abs/math/0508341 (2005) (unpublished)
  57. 57.
    Desoer, C., Kuh, E., Basic Circuit Theory, India Higer Education (2009)Google Scholar
  58. 58.
    Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Geometria Contemporanea, vol. 3. Editori Riuniti, Rome (Mir Edizioni, Moscow) (1989)Google Scholar
  59. 59.
    Dugdale, J.S.: Entropy and Its Physical Meaning. Taylor & Francis, London (1996)Google Scholar
  60. 60.
    Duhem, P.: The Aim and Structure of Physical Theory. Atheneum, New York (1977)Google Scholar
  61. 61.
    Dunford, N., Schwartz, J.T.: Linear Operators in Hilbert spaces, vol. II. Interscience, New York (1964)Google Scholar
  62. 62.
    Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton, NJ (1960)Google Scholar
  63. 63.
    Eriksen, L.J.: Tensor Fields (Handbuch Der Physik Band III/1). Springer, Berlin (1960)Google Scholar
  64. 64.
    Eringen, A.C., Suhubi, E.S.: Elastodynamics. Academic, New York (1974)MATHGoogle Scholar
  65. 65.
    Faraday, M.: Remarks on Static Induction. Proceedings of the Royal Institution, 12 Feb 1858Google Scholar
  66. 66.
    Fer, F.: Thermodynamique Macroscopique, Tome I, II. Gordon & Breach, Paris (1970)Google Scholar
  67. 67.
    Fermi, E.: Termodinamica. Bollati Boringhieri, Turin, Italy (1963)Google Scholar
  68. 68.
    Feynman, R.P.: Theory of Fundamental Processes. Benjamin, (1962)Google Scholar
  69. 69.
    Feynman, R.P., Leighton, R.B., Sands, M.: Lectures on Physics, vol. I-II-III. Addison-Wesley, Reading, MA (1963)Google Scholar
  70. 70.
    Flanders, H.: Differential Forms with Applications to the Physical Sciences. Academic, New York (1963)MATHGoogle Scholar
  71. 71.
    Fleury, P., Mathieu, J.P.: Fisica Generale e Sperimentale, vol. 1–8. Zanichelli, Bologna, Italy (1970) (Italian translation of Physique générale et expérimentale. Editions Eyrolles, Paris)Google Scholar
  72. 72.
    Fouillé, A.: Electrotechnique à l’Usage des Ingénieurs. Dunod, Paris (1961)Google Scholar
  73. 73.
    Fournet, G.: Electromagnétisme à partir des équations locales. Masson, Paris (1985)Google Scholar
  74. 74.
    Franz, W.: Algebraic Topology. Harrap, London (1968)MATHGoogle Scholar
  75. 75.
    Frauendiener, J.: Discrete Differential Forms in General Relativity. Classical Quantum Gravity 23, S369–S38 (2006)MathSciNetMATHGoogle Scholar
  76. 76.
    Frey, W.H., Cavendish, J.C.: Fast Planar Mesh Generation Using the Delaunay Triangulation. General Motors Research Publication, GMR-4555, Warren (1983)Google Scholar
  77. 77.
    Fung, Y.C.: Foundation of Solid Mechanics. Prentice Hall, Englewood Cliffs, NJ (1965)Google Scholar
  78. 78.
    Godement, R.: Cours d’algebre. Hermann, Paris (1966)Google Scholar
  79. 79.
    Goldberg, S.: Unbounded Operators. Mc Graw-Hill, New York (1966)MATHGoogle Scholar
  80. 80.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading, MA (1957)Google Scholar
  81. 81.
    Gordon, J.E., Wagley, S.: The Science of Structures and Materials, vol. 23. Scientific American Library/Scientific American Books, New York (1988)Google Scholar
  82. 82.
    Granger, R. A.: Fluid Mechanics, Dover, New York (1995)MATHGoogle Scholar
  83. 83.
    Grady, L.J., Polimeni, J.R.: Discrete Calculus, Applied Analysis on Graphs for Computational Science. Springer, London (2010)MATHGoogle Scholar
  84. 84.
    Gray, H.J., Isaacs, A.: A New Dictionary of Physics. Longman, London (1975)Google Scholar
  85. 85.
    Griffiths, D.J.: Introduction to Electrodynamics, Addison-Wesley (2012)Google Scholar
  86. 86.
    Guggenheim, E.A.: Termodinamica. Einaudi, Turin, Italy (1952)Google Scholar
  87. 87.
    Hallén, E.: Electromagnetic Theory. Chapman & Hall, London (1962)Google Scholar
  88. 88.
    Halmos, P.C.: Finite-Dimensional Vector Spaces. Springer, New York (1987)Google Scholar
  89. 89.
    Hehl, F.W., Obukhov, Y.N.: Foundations of Classical Electrodynamics – Charge, Flux and Metric. Birkhäuser, Boston (2003)Google Scholar
  90. 90.
    Helmholtz, H.: Über die Erhaltung der Kraft (Wissenshaftliche Abhandlungen, I). Druck und Verlag von Reimer, Berlin (1847)Google Scholar
  91. 91.
    Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea, New York (1952)MATHGoogle Scholar
  92. 92.
    Hilton, P.J., Wylie, S.: Homology Theory: An Introduction to Algebraic Topology. Cambridge University Press, Cambridge (1967)MATHGoogle Scholar
  93. 93.
    Hirani, A.N.: Discrete exterior calculus. Ph.D. dissertation, Caltech (2003) http://thesis.library.caltech.edu/1885/
  94. 94.
    Hocking, J.G., Young, G.S.: Topology. Addison-Wesley, Reading, MA (1961)MATHGoogle Scholar
  95. 95.
    Houghton, E. L., Brock, A.E.: Aerodynamics for Engineering Students. Edward Arnold (Publisher) Ltd, Ch.11 (1972)Google Scholar
  96. 96.
    Hubbert, M.K.: The Theory of Ground-Water Motion, The Journal of Geology, Vol. 48, No. 8 (1941)Google Scholar
  97. 97.
    Hughes, W.F.: An Introduction to Viscous Flow. McGraw-Hill, New York (1979)MATHGoogle Scholar
  98. 98.
    Hunter, S.C.: Mechanics of Continuous Media. Ellis Horwood, Chichester, UK (1976)MATHGoogle Scholar
  99. 99.
    Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)MATHGoogle Scholar
  100. 100.
    Ingarden, R.S., Jamiolkowski, A.: Classical Electrodynamics. Elsevier, Amsterdam (1985)Google Scholar
  101. 101.
    IUPAP, International Union of Pure and Applied Physics: Symbols, Units and Fundamental Constants in Physics. Document I.U.P.A.P.-25 (SUNAMCO 87-1)Google Scholar
  102. 102.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)MATHGoogle Scholar
  103. 103.
    Jackson, J.D.: Elettrodinamica Classica, 2nd edn. Zanichelli, Bologna, Italy (2001)Google Scholar
  104. 104.
    Jammer, M.: Concepts of Force: A Study in the Foundations of Dynamics. Harvard University Press, Cambridge, MA (1957)Google Scholar
  105. 105.
    Jammer, M.: Concepts of Mass in Classical and Modern Physics. Harvard University Press, Cambridge, MA (1961)Google Scholar
  106. 106.
    Jaunzemis, W.: Continuum Mechanics. MacMillan, New York (1967)MATHGoogle Scholar
  107. 107.
    Jefimenko, O.D.: Electricity and Magnetism. Appleton-Century-Crofts, New York (1966)Google Scholar
  108. 108.
    Joas, C., Lehner, C.: The classical roots of wave mechanics: Schrödinger’s transformations of the optical-mechanical analogy. Studies in History and Philosophy of Modern Physics, 40(4), 338–351 (2009)MathSciNetMATHGoogle Scholar
  109. 109.
    Jordan, E.C., Balmain, K.G.: Electromagnetic Waves and Radiating Systems. Prentice Hall, Englewood Cliffs, NJ (1968)Google Scholar
  110. 110.
    Jouguet, M.: Traité d’électricité theorique, Tomes I, II, III. Gauthier Villars, Paris (1955)Google Scholar
  111. 111.
    Kaufman, A. A.: Geophysical Field Theory and Method: Gravitational, Electric and Magnetic Fields. Academic, New York (1994)Google Scholar
  112. 112.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)MATHGoogle Scholar
  113. 113.
    Kellog, O.D.: Foundation of Potential Theory, Ungar Publishing Co., (1929)Google Scholar
  114. 114.
    Klein, F.: Elementary mathematics from an advanced standpoint: Geometry. 39(3), 201–136 (1948) [Dover, New York]Google Scholar
  115. 115.
    Kompaneyets, A. S.: Theoretical Physics. MIR, Moscow (1965) [P.P. Plane vector fields. Academic, New York 1966]Google Scholar
  116. 116.
    Kundu, P.K., Cohen, I.M., Dowling, D.R: Fluid Mechanics with Multimedia DVD. Academic, New York (2011)Google Scholar
  117. 117.
    Lai, W.M., Rubin, D., Krempl, E.: Introduction to Continuum Mechanics. Pergamon, Oxford (1974)MATHGoogle Scholar
  118. 118.
    Lamarsh, J.R.: Introduction to Nuclear Engineering, 2nd edn. Addison-Wesley, Reading, MA (1977)Google Scholar
  119. 119.
    Lamb, H.: Hydrodynamics. Dover, New York (1945)Google Scholar
  120. 120.
    Lanczos, C.: The variational Principles of Mechanics. Toronto University Press, Toronto (1952)Google Scholar
  121. 121.
    Lanczos, C.: Linear Differential Operators. Van Nostrand Company Limited, New York (1961)MATHGoogle Scholar
  122. 122.
    Landau, L.D., Lifshitz, E.M.: The classical theory of fields. Pergamon Press, Oxford (1962)MATHGoogle Scholar
  123. 123.
    Landau, L., Lifshitz, E.: Mechanics. Pergamon, Oxford (1900)Google Scholar
  124. 124.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1960)MATHGoogle Scholar
  125. 125.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon, Oxford (1958)Google Scholar
  126. 126.
    Langevin, P.: Sur la nature des grandeurs et les choix d’un système d’unités électriques. Bull. Soc. Fr. Phys. 164, 493–505 (1922) [Reprinted in Oeuvres scientifiques de Paul Langevin. Centre National de la Recherche Scientifique, 493–505 (1950)]Google Scholar
  127. 127.
    Langevin, P.: Sur les grandeurs champ et induction. Bull. Soc. Fr. Phys. 162, 491–492 (1921) [Reprinted in Oeuvres scientifiques de Paul Langevin. Centre National de la Recherche Scientifique, 491–492 (1950)]Google Scholar
  128. 128.
    von Laue, M.: Relativitätstheorie, vol. 1. Vieweg, Leipzig, Germany (1921)MATHGoogle Scholar
  129. 129.
    Laugwitz, D.: Differential and Riemannian Geometry. Academic, New York (1965)MATHGoogle Scholar
  130. 130.
    Lebesgue, H.: Leçons sur l’Integration et la Recherche des Fonctions Primitives. Chelsea, Bronx (1928)MATHGoogle Scholar
  131. 131.
    Lebesgue, H.: Sur la Mesure des Grandeurs. Gauthier Villars, Paris (1956)Google Scholar
  132. 132.
    Lefschetz, S.: Algebraic Topology, vol. XXVII. Colloquium Publications American Mathematical Society, New York (1942)MATHGoogle Scholar
  133. 133.
    Lefschetz, S.: Introduction to Topology. Princeton University Press, Princeton, NJ (1949)MATHGoogle Scholar
  134. 134.
    Lefschetz, S.: Topology, 2nd edn. Chelsea, New York (1965)Google Scholar
  135. 135.
    Levi-Civita, T., Amaldi, U.: Compendio di Meccanica Razionale, vols. I, II. Zanichelli, Bologna, Italy (1975)Google Scholar
  136. 136.
    Levi-Civita, T.: The Absolute Differential Calculus. Blackie & Son, London (1954)Google Scholar
  137. 137.
    Lewis, G.N., Randal, M.: Thermodynamics. McGraw-Hill, New York (1923)Google Scholar
  138. 138.
    Lichnerowicz, A.: Tensor Calculus. Methuen, London (1962)MATHGoogle Scholar
  139. 139.
    Lindsay, R.B.: Energy: Historical Development of the Concept. Dowden, Hutchingon & Ross, Stroudsburg (1975)Google Scholar
  140. 140.
    Love, A.E.: A treatise on the mathematical theory of elasticity. Dover (1944)Google Scholar
  141. 141.
    Locker, J.: Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators, vol. 73. American Mathematical Society, Providence, RI (2000)MATHGoogle Scholar
  142. 142.
    Loitsyanskii, L.G.: Mechanics of Liquids and Gases. Pergamon, Oxford (1966)Google Scholar
  143. 143.
    Lorrain, P., Corson, D.R., Lorrain, F.: Electromagnetic Fields and Waves. Freeman, New York (1996)Google Scholar
  144. 144.
    Luré, L.: Mécanique analytique, Tome I, II. Librairie Universitaire, Louvain (1968)Google Scholar
  145. 145.
    Mach, E.: The Science of Mechanics. Open Court, Chicago (1960)Google Scholar
  146. 146.
    MacFarlane, A.G.: Dynamical System Models. Harper & Brothers, New York (1970)MATHGoogle Scholar
  147. 147.
    Malvern, L.E.: Introduction to the Mechanics of Continuous Medium, Prentice Hall, Englewood Cliffs, NJ (1969)Google Scholar
  148. 148.
    Mansfield E.H.: The Bending and Strectching of Plates, Cambridge Univ. Press (1989)Google Scholar
  149. 149.
    Maugin, G.A.: Towards an Analytical Mechanics of Dissipative Materials, Rend. Sem. Mat. Univ. Pol. Torino, Vol. 58 (2) (2000).Google Scholar
  150. 150.
    Mansfield, M., O’Sullivan, C.: Understanding Physics. Wiley, London (2010)MATHGoogle Scholar
  151. 151.
    Maugin, G.A, Berezowsky, A.: Material formulation of finite-strain thermoelasticity and applications. In: Third International Congress on Thermal Stress, Cracow, Poland (1999)Google Scholar
  152. 152.
    Maxwell, J.C.: Remarks on the mathematical classification of physical quantities. Proc. London Math. Soc. 3(34), 258–266 (1871) [Reprinted by Niven, W.D.: The Scientific Papers of J.C. Maxwell. Dover, New York (1965)]Google Scholar
  153. 153.
    Maxwell, J.C.: Traité Eléméntaire d’electricité. Gauthier Villars, Paris (1884)Google Scholar
  154. 154.
    Maxwell, J.C.: Theory of Heat. Dover, New York (2001)MATHGoogle Scholar
  155. 155.
    Mc Leod, E.B.: Introduction to Fluid Dynamics. Pergamon, Oxford (1963)Google Scholar
  156. 156.
    McMahon, D.: Quantum Field Theory Demystified. McGraw-Hill (2008)Google Scholar
  157. 157.
    Melehy, M.A.: Foundation of the Thermodynamic Theory of Generalized Fields. Mono Book Corporation, Baltimore, MD (1973)Google Scholar
  158. 158.
    Meyer, R.E.: Introduction to Mathematical Fluid Dynamics. Dover, New York (1982)MATHGoogle Scholar
  159. 159.
    Milligan, T.A.: Modern Antenna Design. Wiley, London (2005)Google Scholar
  160. 160.
    Milne-Thomson, L.M.: Theoretical Hydrodynamics. MacMillan, New York (1955)MATHGoogle Scholar
  161. 161.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)Google Scholar
  162. 162.
    Möbius, A.F.: Der barycentrische calcül. Leiptzig (1827). Translated in: The barycentric calculus. Collected works, vol. I. Leipzig, Germany (1885)Google Scholar
  163. 163.
    Møller, C.: The Theory of Relativity. Oxford University Press, Oxford (1962)Google Scholar
  164. 164.
    Moore, W.J.: Physical Chemistry. Longman, London (1961)Google Scholar
  165. 165.
    Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley/Westview Press, Reading, MA (1984)MATHGoogle Scholar
  166. 166.
    Naber, G.L.: Topological Methods in Eucliedean Spaces. Dover, New York (2000)Google Scholar
  167. 167.
    Naimark, M.A.: Linear Differential Operators, Part I. Ungar, New York (1967)MATHGoogle Scholar
  168. 168.
    Naimark, M.A.: Linear Differential Operators, Part II. Ungar, New York (1968)MATHGoogle Scholar
  169. 169.
    Novozilov, J.V., Jappa, J.A.: Elektrodynamika. Nauka, Moscow (1978)Google Scholar
  170. 170.
    Olivieri, L., Ravelli, E.: Elettrotecnica, vol. I. Cedam, Padua, Italy (1983)Google Scholar
  171. 171.
    O’Neill, M.E., Chorlton, F.: Viscous and Compressible Fluid Dynamics. Ellis Horwood, Chichester, UK (1989)MATHGoogle Scholar
  172. 172.
    Paterson, A.R.: A First Course in Fluid Dynamics. Cambridge University Press, Cambridge (1997)Google Scholar
  173. 173.
    Patterson, E.M.: Topology. Oliver and Boyd, Edinburgh, UK (1966)Google Scholar
  174. 174.
    Pauli, W.: Elettrodinamica. Bollati Boringhieri, Turin, Italy (1964)Google Scholar
  175. 175.
    Penfield, P.Jr., Haus, H.: Electrodynamics of Moving Media. MIT Press, Cambridge, MA (1967)Google Scholar
  176. 176.
    Perucca, E.: Fisica Generale e Sperimentale, vols. I, II. UTET, Turin, Italy (1940)Google Scholar
  177. 177.
    Planck, M.: Scientific Autobiography and other Papers. Philosophical Library, New York (1949)Google Scholar
  178. 178.
    Pohl, R.W.: Physical Principles of Electricity and Magnetism. Blackie & Son, London (1930)Google Scholar
  179. 179.
    Pohl, R.W.: Elettrologia, vol. II. Piccin, Padova (1972)Google Scholar
  180. 180.
    Postnikov, M.: Lectures in Geometry. Semester I, Analytic Geometry. Mir, Moscow (1982)Google Scholar
  181. 181.
    Post, E.J.: Formal Structure of Electromagnetics. North-Holland, Amsterdam (1962)MATHGoogle Scholar
  182. 182.
    Post, E.J.: The constitutive map and some of its ramifications. Ann. Phys. 71, 497–518 (1972)Google Scholar
  183. 183.
    Post, E.J.: A minor or a major predicament of physical theory. Found. Phys. 7 (3/4), 255–277 (1977)Google Scholar
  184. 184.
    Post, E.J.: Kottler-Cartan-Van Dantzig (KCD) and noninertial systems. Found. Phys. 9, 619–640 (1978)Google Scholar
  185. 185.
    Post, E.J.: Magnetic symmetry, improper symmetry and Neumann’s principle. Found. Phys. 8(3/4), 277–294 (1978)Google Scholar
  186. 186.
    Post, E.J.: The logic of time reversal. Found. Phys. 9(1–2), 129–161 (1979)MathSciNetGoogle Scholar
  187. 187.
    Post, E.J.: Time asymmetries in classical and in nonclassical physics. Found. Phys. 9(11/12), 831–863 (1979)MathSciNetGoogle Scholar
  188. 188.
    Prager, W.: Introduction to Mechanics of Continua. Ginn & Company, Boston (1961)MATHGoogle Scholar
  189. 189.
    Preumont, A.: Mechatronics Dynamics of Electromechanical and Piezoelectric Systems. Springer, Dordrecht, The Netherlands (2006)MATHGoogle Scholar
  190. 190.
    Prigogine, I.: Introduction a la Thermodynamique des Processus Irreversibles. Interscience/Wiley, New York (1974)Google Scholar
  191. 191.
    Redlich, O.:Generalized coordinates and forces. J. Phys. Chem. 66, 585–588 (1962)Google Scholar
  192. 192.
    Rojansky, V.: Electromagnetic Fields and Waves. Dover, New York (1979)Google Scholar
  193. 193.
    Rosen, J.: Fundamental manifestations of symmetry in physics. Found. Phys. 20(3), 283–307 (1990)Google Scholar
  194. 194.
    Rosser, W.G.: An Introduction to the Theory of Relativity. Butterworths, London (1964)Google Scholar
  195. 195.
    Roth, J.P.: An application of algebraic topology to numerical analysis: On the existence of a solution to the network problem. Proc. Natl. Acad. Sci. USA 41(7), 518–521 (1955)MATHGoogle Scholar
  196. 196.
    Roth, J.P.: Existence and uniqueness of solution to electrical network problem via homology sequences. In: Wilf, H.S., Harary, F.: Mathematical Aspects of Electrical Network Analysis. American Mathematical Society, Providence, RI (1971)Google Scholar
  197. 197.
    Rzewusky, J.: Field Theory. Part I, Classical Theory. Polish Scientific Publisher, VVarszawa (1964)Google Scholar
  198. 198.
    Sakurai, J.J.: Invariance Principles and Elementary Particles. Princeton University Press (1964)Google Scholar
  199. 199.
    Saletan, E.J., Cromer, A.H.: Theoretical Mechanics. Wiley, New York (1971)MATHGoogle Scholar
  200. 200.
    Schaefer, H.H.: Topological Vector Spaces. Springer, Berlin (1971)Google Scholar
  201. 201.
    Schelkunoff, S.A.: Electromagnetic Fields. Blaisdell, New York (1963)Google Scholar
  202. 202.
    Schönberg, M.: Quantum Theory and Geometry. In: Max Planck Festchrift, pp. 321–338. Deutscher, Berlin (1958)Google Scholar
  203. 203.
    Schouten, J.A., Van Dantzig, D.: On ordinary quantities and W-quantities. Comput. Math. 7, 447–473 (1939)Google Scholar
  204. 204.
    Schouten, J.A.: Tensor Calculus for Physicists. 2nd edn. Dover, New York (1989)Google Scholar
  205. 205.
    Schutz, B.: Geometrical Methods of Mathematical Physics. Cambridge University Press, Cambridge (1988)Google Scholar
  206. 206.
    Schwarz, A.S.; Topology for Physicists. Springer, Berlin (1996)Google Scholar
  207. 207.
    Sears, F.W.: An Introduction to Thermodynamics, the Kinetic Theory of Gases and Statistical Mechanics. Addison-Wesley, Reading, MA (1953)MATHGoogle Scholar
  208. 208.
    Sears, F.W., Zemansky, M.W.: College Physics. Addison-Wesley, London (1955)Google Scholar
  209. 209.
    Shames, I.H.: Mechanics of Fluids. McGraw-Hill, New York (1992)Google Scholar
  210. 210.
    Seifert, H., Threlfall, W.: A Textbook of Topology. Academic, New York (1980)MATHGoogle Scholar
  211. 211.
    Singer, I.M., Thorpe, J.A.: Lecture notes on elementary topology and geometry. Springer, New York (1967)MATHGoogle Scholar
  212. 212.
    Sobrero L., Del significato meccanico della funzione di Airy, Rendiconti della R. Accademia Nazionale dei Lincei,v. XXI, serie 6ω, 1ω sem., fasc. 4, 1935, pp. 264–269.Google Scholar
  213. 213.
    Sommerfeld, A.: Lectures in Theoretical Physics: Mechanics. I, Academic, New York (1952)Google Scholar
  214. 214.
    Sommerfeld, A.: Lectures in Theoretical Physics: Mechanics of Deformable Bodies. 2, Academic, New York (1950)Google Scholar
  215. 215.
    Sommerfeld, A.: Lectures in Theoretical Physics. Electrodynamics. III, Academic, New York (1952)Google Scholar
  216. 216.
    Sommerfeld, A. Lectures in Theoretical Physics. Thermodynamics and Statistical Mechanics. Vol. V. Academic, New York (1952)Google Scholar
  217. 217.
    Spiegel, K.R.: Vector Analysis. Shaum Publ. Co. (1959)Google Scholar
  218. 218.
    Springer, G.: Introduction to Riemann Surfaces. Springer (1957). Physics, vol. I. MacMillan, New York (1967)Google Scholar
  219. 219.
    Stern A., Tong Y., Desbrun M., Marsden J.E.: Geometric computational electrodynamics with variational integrators and discrete differential forms. http://arxiv.org/abs/0707.4470 (2009)
  220. 220.
    Stone, M.H.: Linear Trasformations in Hilbert Spaces, vol. XV. Colloquium Publications, American Mathematical Society, New York (1932)Google Scholar
  221. 221.
    Synge, J.L., Schild, A.: Tensor Calculus. University Press, Toronto (1956)Google Scholar
  222. 222.
    Teixeira F.L., Chew W.C., Lattice electromagnetic theory from a topological viewpoint. J. Math. Phys. 40(1) (1999)Google Scholar
  223. 223.
    Temple, G.: An Introduction to Fluid Dynamics. Clarendon, Oxford (1958)MATHGoogle Scholar
  224. 224.
    Timoshenko, S.; Goodier, J.N.: Theory of Elasticity. Mc Graw Hill (1951)Google Scholar
  225. 225.
    Tolman, R.C.: The Measurable Quantities of Physics. Phys. Rev. IX(3), 237–253 (1917)Google Scholar
  226. 226.
    Tolman, R.C.: The Principles of Statistical Mechanics. Oxford University Press, Oxford (1962)Google Scholar
  227. 227.
    Tonti, E.: On the mathematical structure of a large class of physical theories. Rend. Acc. Lincei LII, 48–56 (1972)Google Scholar
  228. 228.
    Tonti, E.: A mathematical model for physical theories. Rend. Acc. Lincei LII, 175–181; 350–356 (1972)Google Scholar
  229. 229.
    Tonti, E. On the geometrical structure of electromagnetism. In: Ferrarese, G. (ed.) Gravitation, Electromagnetism and Geometrical Structures, for the 80th birthday of A. Lichnerowicz, pp. 281–308. Pitagora Editrice, Bologna, Italy (1995)Google Scholar
  230. 230.
    Tonti, E.: Finite Formulation of the Electromagnetic Field. PIER Prog. Electromagn. Res. 32, 1–42 (2001) [EMW Publishing]Google Scholar
  231. 231.
    Tonti, E.: A Finite Formulation for the Wave Equation. J. Comput. Acoust. 9(4), 1355–1382 (2001)Google Scholar
  232. 232.
    Tonti, E.: A direct discrete formulation of field laws: The cell method. CMES Comput. Model. Eng. Sci. 2(2), 237–258 (2001)Google Scholar
  233. 233.
    Tonti, E. Finite formulation of the electromagnetic field. International Compumag Soc. Newslett. 8(1), 5–11 (2001)Google Scholar
  234. 234.
    Tonti, E.: Finite formulation of electromagnetic field. IEEE Trans. Magn. 38(2), 333–336 (2002)Google Scholar
  235. 235.
    Tonti, E., Nuzzo, E.: Gradiente Rotore Divergenza. Pitagora Editrice, Bologna, Italy (2007)Google Scholar
  236. 236.
    Treder, H.J.: Gravitationstheorie und Äquivalenzprinzip. Akademic, Berlin (1979)Google Scholar
  237. 237.
    Truesdell, C., Toupin, R.: The Classical Field Theories. Encycl. Phys. III(1) (1960) [Springer, Berlin]Google Scholar
  238. 238.
    Truesdell, C.: The physical components of vectors and tensors. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik, 33(10–11), 345–356 (1953)Google Scholar
  239. 239.
    Truesdell, C.: A First Course in Rational Continuum Mechanics: General Concepts, vol. 1. Academic, New York (1991)MATHGoogle Scholar
  240. 240.
    Van Dantzig, D.: On the geometrical representations of elementary physical objects and the relations between geometry and physics. Nieuw Archief voor Wiskunde 3(2), 73–89 (1954)MathSciNetGoogle Scholar
  241. 241.
    Veblen, O., Whitehead, J.H.: The foundations of Differential Geometry. Cambr. Tracts 29, 55–56 (1932)Google Scholar
  242. 242.
    Vanderlinde, J.: Classical Electromagnetic theory, 2nd ed., Springer (2004)Google Scholar
  243. 243.
    Von Westenholz, C.: Differential Forms in Mathematical Physics. vol. I/II. North-Holland, Amsterdam (1980)Google Scholar
  244. 244.
    Wallace, A.W.: An Introduction to Algebraic Topology. Pergamon Press, Oxford (1967)Google Scholar
  245. 245.
    Wallace, A.W.: Algebraic Topology, Homology and Cohomology. W. A. Benjamin, New York (1970)MATHGoogle Scholar
  246. 246.
    Warnick, K.F., Russer, P.: Two, Three and Four-Dimensional Electromagentics Using Differential Forms, Turk. J. Elec. Engin, 14(1), (2006)Google Scholar
  247. 247.
    Weyl, H.: Space Time Matter. Dover, New York (1922)MATHGoogle Scholar
  248. 248.
    Weyl, H.: Philosophy of Mathematics and Natural Science. Princeton University Press, Princeton, NJ (1949)MATHGoogle Scholar
  249. 249.
    Wichmann, E.H.: Berkeley physics course, Vol. 4. Quantum Physics. MacGraw-Hill, (1971)Google Scholar
  250. 250.
    Wigner, E.P.: Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra. Academic, New York (1959)Google Scholar
  251. 251.
    Williams, J.H.Jr.: Fundamentals of Applied Dynamics. Wiley, New York (1996)Google Scholar
  252. 252.
    Willmore, J.T.: An Introdution To Differential Geometry. Clarendon, Oxford (1959)Google Scholar
  253. 253.
    Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton, NJ (1957)MATHGoogle Scholar
  254. 254.
    Whittaker, E.: A History of the Theories of Aether and Electricity, vol. 2. Humanities Press, New York (1973)Google Scholar
  255. 255.
    Yih, C.S.: Fluid Mechanics. McGraw-Hill, New York (1969)Google Scholar
  256. 256.
    Yilmaz, H.: Introduction to the Theory of Relativity and the Principles of Modern Physics. Blaisdell Pub. Co., New York (1965)Google Scholar
  257. 257.
    Yourgrau, W., Mandelstam, S.: Variational Principles in Dynamics and Quantum Theory. Dover, New York (1968)Google Scholar
  258. 258.
    Zund, J.D., Brown, E.: The theory of bivectors. Tensor N.S. 22, 179–185 (1971)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Enzo Tonti
    • 1
  1. 1.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly

Personalised recommendations