Skip to main content

Abstract

In this chapter, we analyse the global variables of fluid dynamics to determine their association with space and time elements. We also present the two major balance equations, the mass and momentum balances, without concerning ourselves with the differential formulation. Lastly, we show how to obtain the traditional equations in a differential formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter presupposes a reading of Chaps. 1–9.

  2. 2.

    Chadwick [39, p. 50].

  3. 3.

    Lai et al. [117, p. 176], McLeod [155, p. 3].

  4. 4.

    Aris [6, p. 124].

  5. 5.

    Chorin and Marsden [41, p. 5], Aris [6, p. 105], McLeod [155, p. 7]. We remark that Meyer [158, p. 64] distinguishes between perfect and ideal fluids: an ideal fluid is a perfect fluid in isochoric motion.

  6. 6.

    Batchelor [10, p. 146], Yih [255, p. 31].

  7. 7.

    Cebeci and Smith [38, p. 2].

  8. 8.

    Billington and Tate [15, p. 96].

  9. 9.

    For this physical interpretation of the stream function, which is usually presented by the purely mathematical relations \(q_{x} = \partial _{y}\psi,\hspace{2.84526pt} q_{y} = -\partial _{x}\psi\), see Milne and Thomson [160, p. 476].

  10. 10.

    Kundu et al. [116, p. 99].

  11. 11.

    Recall the peculiar role of velocity in fluid dynamics, discussed in Sect. 12.2.

  12. 12.

    Recall that a closed line is said to be reducible when it can be contracted to a point by a continuous deformation, without passing outside the fluid region. See Batchelor [10, p. 92].

  13. 13.

    See for example Milne and Thomson [160, p. 53], Lamb [119, p. 17]. In the first case, one can write \(\mathbf{v} =\, \nabla \,\phi\), whereas with the old convention \(\mathbf{v} = -\,\nabla \,\phi ^{\prime}\).

  14. 14.

    See p. 293.

  15. 15.

    Chadwick [39, p. 65], Billington and Tate [15, p. 44], Jaunzemis [106, p. 207], Lai et al. [117, p. 76].

  16. 16.

    Billington and Tate [15, p. 47], Prager [188, p. 64], Aris [6, p. 84], Hunter [98, p. 111], Chadwick [39, p. 74], Jaunzemis [106, p. 208].

  17. 17.

    Temple [223, p. 3]. The expression fluid body is also used by Meyer [158, p. 3].

  18. 18.

    O’Neil [171, p. 55], Chorin and Marsden [41, p. 32].

References

  1. Aris, R.: Vectors, Tensors and the Basic Equations of fluid Mechanics. Prentice Hall, Englewood Cliffs, NJ (1962)

    Google Scholar 

  2. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1977)

    Google Scholar 

  3. Billington, E.W., Tate, A.: The Physics of Deformation and Flow. McGraw-Hill, New York (1981)

    Google Scholar 

  4. Cebeci, T., Smith, A.M.: Analysis of Turbulent Boundary Layers. Academic, New York (1974)

    Google Scholar 

  5. Chadwick, P.: Continuum Mechanics, Concise Theory and Problems. Allen & Unwin, London (1976)

    Google Scholar 

  6. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics, 3rd edn. Springer, Berlin (1993)

    Google Scholar 

  7. Hunter, S.C.: Mechanics of Continuous Media. Ellis Horwood, Chichester, UK (1976)

    Google Scholar 

  8. Jaunzemis, W.: Continuum Mechanics. MacMillan, New York (1967)

    Google Scholar 

  9. Kundu, P.K., Cohen, I.M., Dowling, D.R: Fluid Mechanics with Multimedia DVD. Academic, New York (2011)

    Google Scholar 

  10. Lai, W.M., Rubin, D., Krempl, E.: Introduction to Continuum Mechanics. Pergamon, Oxford (1974)

    Google Scholar 

  11. Lamb, H.: Hydrodynamics. Dover, New York (1945)

    Google Scholar 

  12. Mc Leod, E.B.: Introduction to Fluid Dynamics. Pergamon, Oxford (1963)

    Google Scholar 

  13. Meyer, R.E.: Introduction to Mathematical Fluid Dynamics. Dover, New York (1982)

    Google Scholar 

  14. Milne-Thomson, L.M.: Theoretical Hydrodynamics. MacMillan, New York (1955)

    Google Scholar 

  15. O’Neill, M.E., Chorlton, F.: Viscous and Compressible Fluid Dynamics. Ellis Horwood, Chichester, UK (1989)

    Google Scholar 

  16. Prager, W.: Introduction to Mechanics of Continua. Ginn & Company, Boston (1961)

    Google Scholar 

  17. Temple, G.: An Introduction to Fluid Dynamics. Clarendon, Oxford (1958)

    Google Scholar 

  18. Yih, C.S.: Fluid Mechanics. McGraw-Hill, New York (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tonti, E. (2013). Mechanics of Fluids. In: The Mathematical Structure of Classical and Relativistic Physics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7422-7_12

Download citation

Publish with us

Policies and ethics