In this chapter we give the operational definition of the variables of the electromagnetic field by emphasizing the natural association of global electromagnetic variables with oriented space and time elements. We also present the topological equations, starting directly from the experimental laws, i.e. without passing through the differential formulation. Lastly, we show how to obtain the traditional equations in the differential formulation.


Magnetic Flux Electric Field Strength Electromotive Force Global Variable Electric Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 18.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Pergamon, Oxford (1975)Google Scholar
  2. 21.
    Bossavit, A.: Électromagnetism en vue de la modélisation. Springer, Paris (1994)Google Scholar
  3. 71.
    Fleury, P., Mathieu, J.P.: Fisica Generale e Sperimentale, vol. 1–8. Zanichelli, Bologna, Italy (1970) (Italian translation of Physique générale et expérimentale. Editions Eyrolles, Paris)Google Scholar
  4. 72.
    Fouillé, A.: Electrotechnique à l’Usage des Ingénieurs. Dunod, Paris (1961)Google Scholar
  5. 73.
    Fournet, G.: Electromagnétisme à partir des équations locales. Masson, Paris (1985)Google Scholar
  6. 89.
    Hehl, F.W., Obukhov, Y.N.: Foundations of Classical Electrodynamics – Charge, Flux and Metric. Birkhäuser, Boston (2003)Google Scholar
  7. 101.
    IUPAP, International Union of Pure and Applied Physics: Symbols, Units and Fundamental Constants in Physics. Document I.U.P.A.P.-25 (SUNAMCO 87-1)Google Scholar
  8. 102.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)MATHGoogle Scholar
  9. 107.
    Jefimenko, O.D.: Electricity and Magnetism. Appleton-Century-Crofts, New York (1966)Google Scholar
  10. 109.
    Jordan, E.C., Balmain, K.G.: Electromagnetic Waves and Radiating Systems. Prentice Hall, Englewood Cliffs, NJ (1968)Google Scholar
  11. 110.
    Jouguet, M.: Traité d’électricité theorique, Tomes I, II, III. Gauthier Villars, Paris (1955)Google Scholar
  12. 126.
    Langevin, P.: Sur la nature des grandeurs et les choix d’un système d’unités électriques. Bull. Soc. Fr. Phys. 164, 493–505 (1922) [Reprinted in Oeuvres scientifiques de Paul Langevin. Centre National de la Recherche Scientifique, 493–505 (1950)]Google Scholar
  13. 127.
    Langevin, P.: Sur les grandeurs champ et induction. Bull. Soc. Fr. Phys. 162, 491–492 (1921) [Reprinted in Oeuvres scientifiques de Paul Langevin. Centre National de la Recherche Scientifique, 491–492 (1950)]Google Scholar
  14. 153.
    Maxwell, J.C.: Traité Eléméntaire d’electricité. Gauthier Villars, Paris (1884)Google Scholar
  15. 159.
    Milligan, T.A.: Modern Antenna Design. Wiley, London (2005)CrossRefGoogle Scholar
  16. 170.
    Olivieri, L., Ravelli, E.: Elettrotecnica, vol. I. Cedam, Padua, Italy (1983)Google Scholar
  17. 178.
    Pohl, R.W.: Physical Principles of Electricity and Magnetism. Blackie & Son, London (1930)Google Scholar
  18. 179.
    Pohl, R.W.: Elettrologia, vol. II. Piccin, Padova (1972)Google Scholar
  19. 183.
    Post, E.J.: A minor or a major predicament of physical theory. Found. Phys. 7 (3/4), 255–277 (1977)CrossRefGoogle Scholar
  20. 192.
    Rojansky, V.: Electromagnetic Fields and Waves. Dover, New York (1979)Google Scholar
  21. 201.
    Schelkunoff, S.A.: Electromagnetic Fields. Blaisdell, New York (1963)Google Scholar
  22. 215.
    Sommerfeld, A.: Lectures in Theoretical Physics. Electrodynamics. III, Academic, New York (1952)Google Scholar
  23. 229.
    Tonti, E. On the geometrical structure of electromagnetism. In: Ferrarese, G. (ed.) Gravitation, Electromagnetism and Geometrical Structures, for the 80th birthday of A. Lichnerowicz, pp. 281–308. Pitagora Editrice, Bologna, Italy (1995)Google Scholar
  24. 230.
    Tonti, E.: Finite Formulation of the Electromagnetic Field. PIER Prog. Electromagn. Res. 32, 1–42 (2001) [EMW Publishing]Google Scholar
  25. 233.
    Tonti, E. Finite formulation of the electromagnetic field. International Compumag Soc. Newslett. 8(1), 5–11 (2001)Google Scholar
  26. 234.
    Tonti, E.: Finite formulation of electromagnetic field. IEEE Trans. Magn. 38(2), 333–336 (2002)CrossRefGoogle Scholar
  27. 237.
    Truesdell, C., Toupin, R.: The Classical Field Theories. Encycl. Phys. III(1) (1960) [Springer, Berlin]Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Enzo Tonti
    • 1
  1. 1.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly

Personalised recommendations