3D Palmprint Capturing System

Chapter

Abstract

Palmprints have been widely studied for personal authentication because they are highly accurate and incur low costs. Most of the previous work has focused on two-dimensional palmprint identification. However, the inner surfaces of palms not contain only texture information, but also shape information. Unfortunately, two-dimensional palmprint systems lose the shape information when capturing palmprint images. Hence, three-dimensional information is important for palmprint systems. In this chapter, we have designed and developed a novel three-dimensional palmprint acquisition system based on structured-light imaging technology. The acquisition system can obtain palmprint three-dimensional information and at the same time, the corresponding two-dimensional texture, which are used for personal authentication. A three-dimensional palmprint database has been established by using the developed acquisition system, and the testing results illustrate the effectiveness of our system.

Keywords

3D palmprint measurement Biometrics Structured-light imaging Palmprint depth 

References

  1. Cyberware Inc (2010) Cyberware rapid 3D scanners. http://www.cyberware.com/. Accessed 21 May 2012
  2. Fiona B, Paul P, James C (2003) A theoretical comparison of three fringe analysis methods for determining the three-dimensional shape of an object in the presence of noise. Opt Lasers Eng 39(1):35–50. doi:10.1016/S0143-8166(02)00071-4 CrossRefGoogle Scholar
  3. Fratric I, Ribaric S (2008) Colour-based palm print verification: an experiment. In: The 14th IEEE mediterranean. doi:10.1109/MELCON.2008.4618550
  4. Hung YY, Lin L, Shang HM, Park BG (2000) Practical three-dimensional computer vision techniques for full-field surface measurement. Opt Eng 39(1):143–149. doi:10.1117/1.602345 CrossRefGoogle Scholar
  5. Huntley JM, Saldner H (1993) Temporal phase-unwrapping algorithm for automated interferogram analysis. Appl Opt 32(17):3047–3052. doi:10.1364/AO.32.003047 CrossRefGoogle Scholar
  6. Jia W, Huang DS, Zhang D (2008) Palmprint verification based on robust line orientation code. Pattern Recogn 41(5):1504–1513. doi:10.1016/j.patcog.2007.10.011 CrossRefMATHGoogle Scholar
  7. Judge TR, Bryanston-Cross PJ (1994) A review of phase unwrapping techniques in fringe analysis. Opt Lasers Eng 21(4):199–239. doi:10.1016/0143-8166(94)90073-6 CrossRefGoogle Scholar
  8. Kong AW, Zhang D (2004) Competitive coding scheme for palmprint verification. Int Conf Pattern Recogn 1:520–523. doi:10.1109/ICPR.2004.1334184 Google Scholar
  9. Konica Minolta Sensing Inc (2010) Konica Minolta VIVID 9i/910. http://www.3dscanco.com/products/3d-scanners/3d-laser-scanners/konica-minolta/. Accessed 1 July 2012
  10. Li W, Zhang L, Zhang D, Lu GM, Yan JQ (2010) Efficient joint 2D and 3D palmprint matching with alignment refinement. IEEE Conf Comput Vision Pattern Recogn. doi:10.1109/CVPR.2010.5540134 Google Scholar
  11. Sansoni G, Biancardi L, Minoni U, Docchio F (1994) A novel, adaptive system for 3-D optical profilometry using a liquid crystal light projector. IEEE Trans Instrum Meas. doi:10.1109/19.310169 Google Scholar
  12. Shu W, Zhang D (1998) Automated personal identification by palmprint. Opt Eng 37(8):2359–2362. doi:10.1117/1.601756 CrossRefGoogle Scholar
  13. Srinivassan V, Liu HC (1984) Automated phase measuring profilometry of 3D diffuse object. Appl Opt 23(18):3105–3108CrossRefGoogle Scholar
  14. Sun ZN, Tan TN, Wang Y, Li SZ (2005) Ordinal palmprint representation for personal identification. In: Proceeding of IEEE international conference on computer vision and pattern recognition, pp 279–284. doi:10.1109/CVPR.2005.267
  15. Tribolet J (1977) A new phase unwrapping algorithm. IEEE Trans Acoust Speech Signal Process. doi:10.1109/TASSP.1977.1162923 MATHGoogle Scholar
  16. Wong M, Zhang D, Kong WK, Lu G (2005) Real-time palmprint acquisition system design. IEE Proc.Vis Image Signal Process. doi:10.1049/ip-vis:20049040
  17. Zhang D, Shu W (1999) Two novel characteristics in palmprint verification: datum point invariance and line feature matching. Pattern Recogn 32(4):691–702. doi:10.1016/S0031-3203(98)00117-4 CrossRefGoogle Scholar
  18. Zhang D, Kong AW, You J, Wong M (2003) On-line palmprint identification. IEEE Trans Pattern Anal Mach Intell 25(9):1041–1050. doi:10.1109/TPAMI.2003.1227981 CrossRefGoogle Scholar
  19. Zhang D, Lu G, Li W, Zhang L, Luo N (2009) Palmprint Recognition Using 3-D Information. IEEE Trans Syst Man Cybern. doi:10.1109/TSMCC.2009.2020790 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ComputingThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR
  2. 2.Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenPeople’s Republic of China

Personalised recommendations