Advertisement

Of Bats and Molecules: Chromosomal Characters for Judging Phylogenetic Relationships

  • Marianne Volleth
Chapter

Abstract

Traditionally, morphological characters were used for judging phylogenetic relationships. These features, however, are prone to convergent evolution, and therefore, some aspects of intrafamilial and most interfamilial relationships remained unsolved to a large extent. In recent times, genetic features were used to elucidate phylogenetic relationships in Chiroptera. In the following chapter, a short introduction to classical and molecular cytogenetic methods is given. Furthermore, types of chromosomal rearrangements detected by application of such techniques are described. Amongst the large number of characters obtained by comparative karyological analysis, two cytogenetic features, i.e. inv 2 and inv 5, could serve as synapomorphies for the suborder Pteropodiformes. This finding supports recent molecular genetic results which proposed a basal division of Chiroptera into Pteropodiformes and Vespertilioniformes, rejecting the traditional division into Mega- and Microchiroptera. Concerning the phylogenetic relationships within the superfamily Emballonuroidea, however, cytogenetic results are not consistent with traditional views. On the one hand, a common character connecting the genera Taphozous and Emballonura was not found. On the other hand, similarity in three chromosomal features suggests a closer relationship between Emballonura and Nycteris than hitherto suspected.

Keywords

Centric Fusion Chromosomal Evolution Acrocentric Chromosome Robertsonian Translocation Karyotype Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agnarsson I, Zambrana-Torrelio CM, Flores-Saldana NP, May-Collado LJ (2011) A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLoS Curr 3, RRN1212PubMedCrossRefGoogle Scholar
  2. Ao L, Gu X, Feng Q, Wang J, O’Brien PC, Fu B, Mao X, Su W, Wang Y, Volleth M, Yang F, Nie W (2006) Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison. Cytogenet Genome Res 115:145–153PubMedCrossRefGoogle Scholar
  3. Ao L, Mao X, Nie W, Gu X, Feng Q, Wang J, Su W, Wang Y, Volleth M, Yang F (2007) Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting. Chromosome Res 15:257–267PubMedGoogle Scholar
  4. Baird AB, Marchán-Rivadeneira MR, Pérez SG, Baker RJ (2012) Morphological analysis and description of two new species of Rhogeessa (Chiroptera: Vespertilionidae) from the neotropics. Occas Pap Tex Tech Univ Mus 307:1–25Google Scholar
  5. Baker RJ (2006) Order Chiroptera. In: O’Brien SJ, Menninger JC, Nash WG (eds) Atlas of mammalian chromosomes. Wiley, Hoboken, NJ, pp 378–380Google Scholar
  6. Baker RJ, Bickham JW (1980) Karyotypic evolution in bats: evidence of extensive and conservative chromosomal evolution in closely related taxa. Syst Zool 29:239–253CrossRefGoogle Scholar
  7. Bickham JW (1979) Banded karyotypes of 11 species of American bats (genus Myotis). Cytologia 44:789–797PubMedCrossRefGoogle Scholar
  8. Bickham JW, Baker RJ (1977) Implications of chromosomal variation in Rhogeessa (Vespertilionidae). J Mammal 58:448–453CrossRefGoogle Scholar
  9. Bickham JW, Baker RJ (1979) Canalization model of chromosomal evolution. In: Schwartz JH, Rollins HB (eds) Models and methodologies in evolutionary theory. Bulletin Carnegie Museum of Natural History No. 13, pp 70–84Google Scholar
  10. Biltueva LS, Yang F, Vorobieva NV, Graphodatsky AS (2004) Comparative map between the domestic pig and dog. Mamm Genome 15:809–818PubMedCrossRefGoogle Scholar
  11. Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX males using bivariate flow karyotype analysis and flow sorted dot blots. Cytometry 11:202–207PubMedCrossRefGoogle Scholar
  12. Carter AM, Goodman SM, Enders AC (2008) Female reproductive tract and placentation in sucker-footed bats (Chiroptera: Myzopodidae) endemic to Madagascar. Placenta 29:484–491PubMedCrossRefGoogle Scholar
  13. Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886PubMedCrossRefGoogle Scholar
  14. Frönicke L (2005) Origins of primate chromosomes – as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences. Cytogenet Genome Res 108:122–138CrossRefGoogle Scholar
  15. Gardner AL (1977) Chromosomal variation in Vampyressa and a review of chromosomal evolution in the Phyllostomidae (Chiroptera). Syst Zool 26:300–318CrossRefGoogle Scholar
  16. Hutcheon JM, Kirsch JAW (2006) A moveable face: deconstructing the Microchiroptera and a new classification of extant bats. Acta Chiropterol 8:1–10CrossRefGoogle Scholar
  17. Kearney TC, Volleth M, Contrafatto G, Taylor PJ (2002) Systematic implications of chromosome GTG-band and bacula morphology for Southern African Eptesicus and Pipistrellus and several other species of Vespertilionidae (Chiroptera: Vespertilionidae). Acta Chiropterol 4:55–75CrossRefGoogle Scholar
  18. Koopman KF (1984) A synopsis of the families of bats. Part VI. Bat Res News 25:15–17Google Scholar
  19. Koopman KF (1985) A synopsis of the families of bats. Part VII. Bat Res News 25(1984):25–29Google Scholar
  20. Lim BK, Engstrom MD, Bickham JW, Patton JC (2008) Molecular phylogeny of New World sheath-tailed bats (Emballonuridae: Diclidurini) based on loci from the four genetic transmission systems in mammals. Biol J Linn Soc 93:189–209CrossRefGoogle Scholar
  21. Mao X, Nie W, Wang J, Su W, Ao L, Feng Q, Wang Y, Volleth M, Yang F (2007) Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison. Chromosome Res 15:835–848PubMedCrossRefGoogle Scholar
  22. Mao X, Nie W, Wang J, Su W, Feng Q, Wang Y, Dobigny G, Yang F (2008) Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving interfamily phylogenetic relationships. Chromosome Res 16:155–170PubMedCrossRefGoogle Scholar
  23. Meredith RW, Janecka JE, Gatesy J, Ryder OA et al (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521–524PubMedCrossRefGoogle Scholar
  24. Miller GS (1907) The families and genera of bats. Bull US Natl Mus 57:1–282Google Scholar
  25. Miller-Butterworth CM, Murphy WJ, O’Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24:1553–1561PubMedCrossRefGoogle Scholar
  26. Müller S, O’Brien PCM, Ferguson-Smith MA, Wienberg J (1997) Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis). Cytogenet Cell Genet 78:260–271PubMedCrossRefGoogle Scholar
  27. Pieczarka JC, Nagamachi CY, O’Brien PCM, Yang F, Rens W, Barros RMS, Noronha RCR, Rissino J, de Oliveira EHC, Ferguson-Smith MA (2005) Reciprocal chromosome painting between two South American bats: Carollia brevicauda and Phyllostomus hastatus (Phyllostomidae; Chiroptera). Chromosome Res 13:339–347PubMedCrossRefGoogle Scholar
  28. Richard F, Lombard M, Dutrillaux B (2003) Reconstruction of the ancestral karyotype of eutherian mammals. Chromosome Res 11:605–618PubMedCrossRefGoogle Scholar
  29. Richards LR, Rambau RV, Lamb JM, Taylor PJ, Yang F, Schoeman MC, Goodman SM (2010) Cross-species chromosome painting in bats from Madagascar: the contribution of Myzopodidae to revealing ancestral syntenies in Chiroptera. Chromosome Res 18:635–653PubMedCrossRefGoogle Scholar
  30. Robinson TJ, Ropiquet A (2011) Examination of hemiplasy, homoplasy and phylogenetic discordance in chromosomal evolution of the Bovidae. Syst Biol 60:439–450PubMedCrossRefGoogle Scholar
  31. Robinson TJ, Ruiz-Herrera A (2008) Defining the ancestral eutherian karyotype: a cladistic interpretation of chromosome painting and genome sequence assembly data. Chromosome Res 16:1133–1141PubMedCrossRefGoogle Scholar
  32. Robinson TJ, Ruiz-Herrera A, Avise JC (2008) Hemiplasy and homoplasy in the karyotypic phylogenies of mammals. Proc Natl Acad Sci U S A 105:14477–14481PubMedCrossRefGoogle Scholar
  33. Ruedi M, Friedli-Weyeneth N, Teeling EC, Puechmaille SJ, Goodman SM (2012) Biogeography of Old World emballonurine bats (Chiroptera: Emballonuridae) inferred with mitochondrial and nuclear DNA. Mol Phylogenet Evol 64:204–211PubMedCrossRefGoogle Scholar
  34. Scherthan H, Cremer T, Arnason U, Weier H-U, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6:342–347PubMedCrossRefGoogle Scholar
  35. Sotero-Caio CG, Pieczarka JC, Nagamachi CY, Gomes AJ, Lira TC, O’Brien PC, Ferguson-Smith MA, Souza MJ, Santos N (2011) Chromosomal homologies among vampire bats revealed by chromosome painting (Phyllostomidae, Chiroptera). Cytogenet Genome Res 132:156–64PubMedCrossRefGoogle Scholar
  36. Springer MS, Teeling EC, Madsen O, Stanhope M, de Jong WW (2001) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci U S A 98:6241–6246PubMedCrossRefGoogle Scholar
  37. Teeling E, Scally M, Kao D, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188–192PubMedCrossRefGoogle Scholar
  38. Teeling E, Madsen O, Van Den Bussche R, de Jong WW, Stanhope MJ, Springer MS (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci U S A 99:1431–1436PubMedCrossRefGoogle Scholar
  39. Teeling E, Springer M, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584PubMedCrossRefGoogle Scholar
  40. Teeling EC, Dool S, Springer M (2012) Phylogenies, fossils and functional genes: the evolution of echolocation in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils, molecules and morphology. Cambridge University Press, Cambridge, pp 1–22CrossRefGoogle Scholar
  41. Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A et al (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:257–263PubMedCrossRefGoogle Scholar
  42. Volleth M (1987) Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenet Cell Genet 44:186–197PubMedCrossRefGoogle Scholar
  43. Volleth M, Eick G (2012) Chromosome evolution in bats as revealed by FISH: the ongoing search for the ancestral chiropteran karyotype. Cytogenet Genome Res 137:165–173PubMedCrossRefGoogle Scholar
  44. Volleth M, Heller KG (1994) Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Z Zool Syst Evol 32:11–34CrossRefGoogle Scholar
  45. Volleth M, Klett C, Kollak A, Dixkens C, Winter Y, Just W, Vogel W, Hameister H (1999) ZOO-FISH analysis in a species of the order Chiroptera: Glossophaga soricina (Phyllostomidae). Chromosome Res 7:57–64PubMedCrossRefGoogle Scholar
  46. Volleth M, Bronner G, Göpfert MC, Heller K-G, von Helversen O, Yong H-S (2001) Karyotype comparison and phylogenetic relationships of Pipistrellus-like bats (Vespertilionidae; Chiroptera; Mammalia). Chromosome Res 9:25–46PubMedCrossRefGoogle Scholar
  47. Volleth M, Heller KG, Pfeiffer RA, Hameister H (2002) A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five Microchiropteran families. Chromosome Res 10:477–497PubMedCrossRefGoogle Scholar
  48. Volleth M, Van Den Bussche R, Baker R (2009) Karyotyping and studying chromosomes of bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. Hopkins University Press, Baltimore, MD, pp 757–771Google Scholar
  49. Volleth M, Yang F, Müller S (2011) High-resolution chromosome painting reveals the first genetic signature for the chiropteran suborder Pteropodiformes (Mammalia: Chiroptera). Chromosome Res 19:507–519PubMedCrossRefGoogle Scholar
  50. Wadell P, Kishino H, Ota R (2001) A phylogenetic foundation for comparative mammalian genomics. Genomes Inform 12:141–154Google Scholar
  51. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652PubMedCrossRefGoogle Scholar
  52. Zima J, Horacek I (1985) Synopsis of karyotypes of vespertilionid bats (Mammalia: Chiroptera). Acta Univ Carol Biol 1981:311–329Google Scholar
  53. Zima J, Volleth M, Horácek I, Cerveny J, Cervena A, Prucha K, Macholan M (1992) Comparative karyology of rhinolophid bats. In: Horácek I, Vorhalik V (eds) Prague studies in mammalogy. Charles University Press, Prague, pp 229–236Google Scholar
  54. Zwickl DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51:588–598PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Human GeneticsOtto von Guericke UniversityMagdeburgGermany

Personalised recommendations