Skip to main content

Nasal-Emission and Nose leaves

Abstract

Despite all other craniodental adaptations, the head of most bats must function as an ultrasonic emitter and receiver. Not all echolocation calls are ultrasonic, but all either are emitted from an open mouth (oral-emission) or are forced through the confines of the nasal passages (nasal-emission), and some nasal-emitting bats alternate between modes as the situation demands. The conspicuous baffles that surround the nostrils of nasal-emitting bats are not ornamental structures; rather, these “noseleaves” serve several important acoustic functions and are considered to be the earmark of nasal-emitting bats. For many readers, the difference between oral- and nasal-emission is viewed as a simple character state, most likely tied to the vagaries of foraging ecology in some tangential manner. However, Pedersen and Timm (Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 470–499, 2012) reviewed a considerable volume of literature discussing how the advent of nasal-emitting bats required a dramatic redesign of the microchiropteran rostrum and skull base during development. Nasal-emission is therefore a key innovation responsible for two of the most dramatic morphological radiations in the Chiroptera—phyllostomid and rhinolophid + hipposiderid bats. Herein, we summarize and update that review and then discuss recent advances in the numerical analysis of form and function in regard to the beamforming function of noseleaves (Müller, J Acoust Soc Am 128:1414–1425, 2010).

Keywords

  • Nasal Cavity
  • Vocal Tract
  • Beam Pattern
  • Narrow Beam
  • Nasal Passage

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-7397-8_4
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-7397-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4

References

  • Armstrong KN (2002) Morphometric divergence among populations of Rhinonicteris aurantius (Chiroptera: Hipposideridae) in Northern Australia. Aust J Zool 50:649–669

    Google Scholar 

  • Armstrong KN, Coles RB (2007) Echolocation call frequency differences between geographic isolates of Rhinonicteris aurantia (Chiroptera: Hipposideridae): implications of nasal chamber size. J Mammal 88:94–104

    Google Scholar 

  • Armstrong KN, Kerry LJ (2011) Modeling the prey detection performance of Rhinonicteris aurantia (Chiroptera: Hipposideridae) in different atmospheric conditions discounts the notional role of relative humidity in adaptive evolution. J Theor Biol 278:44–54

    PubMed  Google Scholar 

  • Brinkløv S, Kalko EKV, Surlykke A (2009) Intense echolocation calls from two ‘whispering’ bats Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). J Exp Biol 212:11–20

    PubMed  Google Scholar 

  • Brinkløv S, Kalko EKV, Surlykke A (2010) Dynamic adjustment of biosonar intensity to habitat clutter in the bat Macrophyllum macrophyllum (Phyllostomidae). Behav Ecol Sociobiol 64:1867–1874

    Google Scholar 

  • Brinkløv S, Jakobsen S, Ratcliffe JM, Kalko EKV, Surlykke A (2011) Echolocation call intensity and directionality in flying short-tailed fruit bats Carollia perspicillata (Phyllostomidae). J Acoust Soc Am 129:427–435

    PubMed  Google Scholar 

  • Bullen RD, McKenzie NL (2008) Aerodynamic cleanliness in bats. Aust J Zool 56:281–296

    Google Scholar 

  • Carroll SB (2005) Evolution at two levels: on genes and form. PloS Biol. doi:10.1371/journal.pbio.0030245

    Google Scholar 

  • Chai Y, Maxson RE (2006) Recent advances in craniofacial morphogenesis. Dev Dyn 235:2353–2375

    PubMed  Google Scholar 

  • Chen CH, Cretekos CJ, Rasweiler JJ, Behringer RR (2005) Hoxd13 expression in the developing limbs of the short-tailed fruit bat Carollia perspicillata. Evol Dev 7:130–141

    PubMed  CAS  Google Scholar 

  • Cretekos CJ, Weatherbee S, Chen C, Badwaik N, Niswander L, Behringer R, Rasweiler J (2005) Embryonic staging system for the short-tailed fruit bat Carollia perspicillata a model organism for the mammalian order Chiroptera based upon timed pregnancies in captive-bred animals. Dev Dyn 233:721–738

    PubMed  Google Scholar 

  • Cretekos CJ, Deng J-M, Green ED, NISC Comparative Sequencing Program, Rasweiler JJ, Behringer RR (2007) Isolation genomic structure and developmental expression of Fgf8 in the short-tailed fruit bat Carollia perspicillata. Int J Dev Biol 51:333–338

    PubMed  CAS  Google Scholar 

  • Creuzet S, Couly G, Le Douarin NM (2005) Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies. J Anat 207:447–459

    PubMed  Google Scholar 

  • Csorba G, Ujhelyi P, Thomas N (2003) Horseshoe bats of the World (Chiroptera: Rhinolophidae). Alana Books, Shropshire

    Google Scholar 

  • Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic, Burlington

    Google Scholar 

  • Davis JL, Santana SE, Dumont ER, Grosse IR (2010) Predicting bite force in mammals: two-dimensional versus three-dimensional lever models. J Exp Biol 213:1844–1851

    PubMed  CAS  Google Scholar 

  • De Mey F, Reijniers J, Peremans H, Otani M, Firzlaff U (2008) Simulated head related transfer function of the phyllostomid bat Phyllostomus discolor. J Acoust Soc Am 124:2123–2132

    PubMed  Google Scholar 

  • Debaeremaeker KR, Fenton MB (2003) Basisphenoid and basioccipital pits in microchiropteran bats. Biol J Linn Soc 78:215–233

    Google Scholar 

  • Dumont ER (2004) Patterns of diversity in cranial shape among plant-visiting bats. Acta Chiropt 6:59–74

    Google Scholar 

  • Dumont ER, Davis JL, Grosse IR, Burrows AM (2011) Finite element analysis of performance in the skulls of marmosets and tamarins. J Anat 218:151–162

    PubMed  Google Scholar 

  • Dumont ER, Dávalos LM, Goldberg A, Santana SE, Rex K, Voigt CC (2012) Morphological innovation diversification and invasion of a new adaptive zone. Proc R Soc B 279:1797–1805

    PubMed  Google Scholar 

  • Eick G, Jacobs DS, Matthee C (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886

    PubMed  CAS  Google Scholar 

  • Firzlaf U, Schuller G (2003) Spectral directionality of the external ear of the lesser spear-nosed bat Phyllostomus discolor. Hear Res 181:27–39

    Google Scholar 

  • Fondon JW, Garner HR (2007) Detection of length-dependent effects of tandem repeat alleles by 3-D geometric decomposition of craniofacial variation. Dev Gen Evol 217:79–85

    Google Scholar 

  • Freeman PW (2000) Macroevolution in microchiroptera: recoupling morphology and ecology with phylogeny. Evol Ecol Res 2:317–335

    Google Scholar 

  • Freeman PW, Lemen CA (2010) Simple predictors of bite force in bats: the good the better and the better still. J Zool 282:284–290

    Google Scholar 

  • Frey R, Volodin I, Volodina E (2007) A nose that roars: anatomical specializations and behavioural features of rutting male saiga. J Anat. doi:10.1111/j.1469-7580.2007.00818.x

    Google Scholar 

  • Funakoshi K, Nomura E, Matsukubol M, Wakital Y (2010) Postnatal growth and vocalization development of the Lesser Horseshoe bat Rhinolophus cornutus in the Kyushu District Japan. Mammal Study 35:65–78

    Google Scholar 

  • Gardiner JD, Dimitriadis G, Sellers WI, Codd JR (2008) The aerodynamics of big ears in the brown long-eared bat Plecotus auritus. Acta Chiropt 10:313–321

    Google Scholar 

  • Ghose K, Moss CF (2006) Steering by hearing: a bat’s acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law. J Neurosci 26:1704–1710

    PubMed  CAS  Google Scholar 

  • Ghose K, Moss CF, Horiuchi TK (2007) Flying big brown bats emit a beam with two lobes in the vertical plane. J Acoust Soc Am 122:3717–3724

    PubMed  Google Scholar 

  • Giannini NP, Simmons NB (2007) The chiropteran premaxilla: a reanalysis of morphological variation and its phylogenetic interpretation. Am Mus Novit 3585:1–44

    Google Scholar 

  • Giannini NP, Simmons NB (2012) Toward an integrative theory of on the origin of bat flight. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 353–384

    Google Scholar 

  • Giannini NP, Goswami A, Sanchez-Villagra MR (2006) Development of integumentary structures in Rousettus amplexicaudatus (Mammalia: Chiroptera: Pteropodidae) during late-embryonic and fetal stages. J Mammal 87:993–1001

    Google Scholar 

  • Giannini NP, Gunnell GF, Habersetzer J, Simmons NB (2012) Early evolution of body size in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 530–555

    Google Scholar 

  • Göbbel L (2000) The external nasal cartilages in chiroptera: significance for intraordinal relationships. J Mammal Evol 7:167–201

    Google Scholar 

  • Göbbel L (2002a) Morphology of the external nose in Hipposideros diadema and Lavia frons with comments on its diversity and evolution among leaf-nosed Microchiroptera. Cells Tissues Organs 170:39–60

    PubMed  Google Scholar 

  • Göbbel L (2002b) Ontogenetic and phylogenetic transformations of the lacrimal-conducting apparatus among microchiroptera. Mammal Biol 67:338–357

    Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale University Press, New Haven

    Google Scholar 

  • Hallgrìmsson B, Lieberman DE (2008) Mouse models and the evolutionary developmental biology of the skull. J Integr Comp Biol 48:373–384

    Google Scholar 

  • Hallgrìmsson B, Lieberman DE, Liu W, Ford-Hutchinson AF, Jirik FR (2007) Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol Dev 9:76–91

    PubMed  Google Scholar 

  • Hallgrìmsson B, Jamniczky H, Young NM, Rolian C, Parsons TE, Boughner JC, Marcucio RS (2009) Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol Biol 36:355–376

    PubMed  Google Scholar 

  • Hand SJ (1998) Xenorhinos, a new genus of old world leaf-nosed bats (Microchiroptera: Hipposideridae) from the Australian Miocene. J Vertebr Paleontol 18:430–439

    Google Scholar 

  • Hand SJ, Archer M (2005) A new hipposiderid genus (microchiroptera) from an early miocene bat community in Australia. Palaeontology 48:371–383

    Google Scholar 

  • Hartley DI, Suthers RA (1987) The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat Carollia perspicillata. J Acoust Soc Am 82:1892–1900

    PubMed  CAS  Google Scholar 

  • Hockman D, Cretekos CJ, Mason MK, Behringer RR, Jacobs DS, Illing N (2008) A second wave of Sonic hedgehog expression during the development of the bat limb. Proc Natl Acad Sci USA 105:16982–16987

    PubMed  CAS  Google Scholar 

  • Jennings NV, Parsons S, Barlow KE, Gannon MR (2004) Echolocation calls and wing morphology of bats from the West Indies. Acta Chiropt 6:75–90

    Google Scholar 

  • Jones G, Holderied M (2007) Bat echolocation calls: adaptation and convergent evolution. Proc R Soc B Biol Sci 274:905–912

    Google Scholar 

  • Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149–156

    PubMed  Google Scholar 

  • Kuc R (2010) Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation. J Acoust Soc Am 128:3190–3199

    PubMed  Google Scholar 

  • Kuc R (2011) Bat noseleaf model: echolocation function design considerations and experimental verification. J Acoust Soc Am 129:3361–3366

    PubMed  Google Scholar 

  • Larkey DJ, Datwyler SL, Lancaster WC (2012) Vertebral fusion in bats: phylogenetic patterns and functional relationships. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 500–529

    Google Scholar 

  • Li G, Wang J, Rossiter SJ, Jones G, Zhang S (2007) Accelerated FoxP2 evolution in echolocating bats. PloS One 2(9):e900. doi:10.1371/journal.pone.0000900

    PubMed  Google Scholar 

  • Li G, Wang J, Rossiter SJ, Jones G, Cotton JA, Zhang S (2008) The hearing gene prestin reunites echolocating bats. Proc Natl Acad Sci USA 105:13959–13964

    PubMed  CAS  Google Scholar 

  • Liu Y, Feng J, Jiang YL, Wu L, Sun KP (2007) Vocalization development of greater horseshoe bat Rhinolophus ferrumequinum (Rhinolophidae Chiroptera). Folia Zool 52:126–136

    Google Scholar 

  • Liu Z, Li S, Wang W, Xu D, Murphy RW, Shi P (2011) Parallel evolution of KCNQ4 in echolocating bats. PLoS One 6(10):e26618. doi:10.1371/journal.pone.0026618

    PubMed  CAS  Google Scholar 

  • Ma J, Müller R (2011) A method for characterizing the biodiversity in bat pinnae as a basis for engineering analysis. Bioinspir Biomim. doi:10.1088/1748-3182/6/2/026008

    Google Scholar 

  • Marcías S, Mora EC, Koch C, von Helversen O (2005) Echolocation behavior of Phyllops falcatus (Chiroptera: Phyllostomidae): unusual frequency range of the first harmonic. Acta Chiropt 7:275–283

    Google Scholar 

  • Marcucio RS, Young NM, Hu D, Hallgrìmsson B (2011) Mechanisms that underlie co-variation of the brain and face. Genesis 49:177–189

    PubMed  Google Scholar 

  • Monteiro LR, Nogueira MR (2011) Evolutionary processes in the radiation of phyllostomid bats. BMC Evol Biol 11:137, http://www.biomedcentral.com/1471-2148/11/137

    PubMed  Google Scholar 

  • Mora EC, Marcías S (2006) Echolocation calls of Poey’s flower bat (Phyllonycteris poeyi) unlike those of other phyllostomids. Naturwissenschaften. doi:10.1007/s00114-006-0198-7

    PubMed  Google Scholar 

  • Morsli H, Tuorto F, Choo D, Postiglione MP, Simeone A, Wu DK (1999) Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development 126:2335–2343

    PubMed  CAS  Google Scholar 

  • Müller R (2010) Numerical analysis of biosonar beamforming mechanisms and strategies in bats. J Acoust Soc Am 128:1414–1425

    PubMed  Google Scholar 

  • Müller R, Kuc R (2000) Foliage echoes: a probe into the ecological acoustics of bat echolocation. J Acoust Soc Am 108:836–845

    PubMed  Google Scholar 

  • Müller GB, Newman SA (2005) The innovation triad: an EvoDevo agenda. J Exp Zool B 304:487–503

    Google Scholar 

  • Müller B, Goodman SM, Peichi L et al (2007) Cone photoreceptor diversity in the retinas of fruit bats (megachiroptera). Brain Behav Evol 70:90–104

    PubMed  Google Scholar 

  • Müller B, Glösmann M, Peichl L, Knop GC, Hagemann C, Ammermüller J (2009) Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One 4(7):e6390. doi:10.1371/journal.pone.0006390

    PubMed  Google Scholar 

  • Nelson JE, Christian KA, Baudinette RV (2007) Anatomy of the nasal passages of three species of Australian bats in relation to water loss. Aust J Zool 55:57–62

    Google Scholar 

  • Nogueira MR, Peracchi AL, Monteiro LR (2009) Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Funct Ecol 23:715–723

    Google Scholar 

  • Nolte M, Hockman D, Cretekos C, Behringer R, Rasweiler J (2008) Embryonic staging system for the black mastiff bat Molossus rufus (Molossidae) correlated with structure-function relationships in the adult. Anat Rec 292:155–168

    Google Scholar 

  • Odendaal LJ, Jacobs DS (2011) Morphological correlates of echolocation frequency in the endemic Cape horseshoe bat Rhinolophus capensis (Chiroptera: Rhinolophidae). J Comp Physiol A 197:435–446

    Google Scholar 

  • Pedersen SC (1995) Cephalometric correlates of echolocation in the Chiroptera II: fetal development. J Morphol 225:107–123

    Google Scholar 

  • Pedersen SC (2000) Skull growth and the acoustical axis of the head in bats. In: Adams RA, Pedersen SC (eds) Ontogeny functional ecology and evolution of bats. Cambridge University Press, Cambridge, pp 174–213

    Google Scholar 

  • Pedersen SC, Timm DW (2012) Cephalometry and evolutionary constraint in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 470–499

    Google Scholar 

  • Pedersen SC, Riede T, Nguyen T, Lu H, Ma J, Yan Z, He W, Zhang Z, Wang F, Müller R (2009) Reconstruction of the rhinolophid vocal tract. Bat Res News 50:131A

    Google Scholar 

  • Radlanski RJ, Renz H (2006) Genes forces and forms: mechanical aspects of prenatal craniofacial development. Dev Dyn 235:1219–1229

    PubMed  Google Scholar 

  • Reijniers J, Vanderelst D, Peremans H (2010) Morphology-induced information transfer in bat sonar. Phys Rev Lett. doi:10.1103/PhysRevLett.105.148701

    PubMed  Google Scholar 

  • Santana SE, Grosse IR, Dumont ER (2012) Dietary hardness loading behavior and the evolution of skull form in bats. Evolution 66:2587–2598

    PubMed  Google Scholar 

  • Schnitzler H-U, Grinnell AD (1977) Directional sensitivity of echolocation in the horseshoe bat Rhinolophus ferrumequinum. J Comp Physiol A 166:51–61

    Google Scholar 

  • Sears KE, Behringer RR, Rasweiler JJ, Niswander LA (2006) Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc Natl Acad Sci USA 103:6581–6586

    PubMed  CAS  Google Scholar 

  • Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, Palaeochiropteryx to extant bat lineages with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235:1–182

    Google Scholar 

  • Soukup V, Horácek I, Cerny R (2013) Development and evolution of the vertebrate primary mouth. J Anat 222:79–99

    PubMed  Google Scholar 

  • Springer MS, Teeling EC, Madsen O, Stanhope MJ, Jong WW (2001a) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98:6241–6246

    PubMed  CAS  Google Scholar 

  • Springer MS, Teeling EC, Stanhope MJ (2001b) External nasal cartilages in bats: evidence for microchiropteran monophyly? J Mammal Evol 8:231–236

    Google Scholar 

  • Surlykke A, Kalko EKV (2008) Echolocating bats cry out loud to detect their prey. PLoS ONE. doi:10.1371/journal.pone.0002036

    PubMed  Google Scholar 

  • Surlykke A, Moss C (2000) Echolocation behavior of big brown bats Eptesicus fuscus in the field and the laboratory. J Acoust Soc Am 108:2419–2429

    PubMed  CAS  Google Scholar 

  • Surlykke A, Ghose K, Moss CF (2009a) Acoustic scanning of natural scenes by echolocation in the big brown bat Eptesicus fuscus. J Exp Biol 212:1011–1020

    PubMed  Google Scholar 

  • Surlykke A, Pedersen SB, Jakobsen L (2009b) Echolocating bats emit a highly directional sonar sound beam in the field. Proc R Soc B 276:853–860

    PubMed  Google Scholar 

  • ten Berge D, Brouwer A, Korving J, Martin JF, Meijlink F (1998) Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region inner ear and limbs. Development 125:3831–3842

    PubMed  Google Scholar 

  • Vanderelst D, De Mey F, Peremans H (2010a) Simulating the morphological feasibility of adaptive beamforming in bats. In: Doncieux et al. (eds) From animals to animats 11. Lecture notes in computer science, vol 6226. Springer, Heidelberg, pp 136–145

    Google Scholar 

  • Vanderelst D, De Mey F, Peremans H, Geipel I, Kalko EKV (2010b) What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS One. doi:10.1371/journal.pone.0011893

    PubMed  Google Scholar 

  • Vanderelst D, Reijniers J, Peremans H (2011) The furrows of Rhinolophidae revisited. J R Soc Interface. doi:10.1098/rsif.2011.0812

    Google Scholar 

  • Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB (2010) A bony connection signals laryngeal echolocation in bats. Nature 463:939–942

    PubMed  CAS  Google Scholar 

  • Wang X, Müller R (2009) Pinna-rim skin folds narrow the sonar beam in the lesser false vampire bat (Megaderma spasma). J Acoust Soc Am 126:3311–3318

    PubMed  Google Scholar 

  • Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL, Tsao H, LI W (2004) Molecular evolution of bat color vision genes. Mol Biol Evol 21:295–302

    PubMed  CAS  Google Scholar 

  • Wang Z, Han N, Racey PA, Ru B, He G (2010) A comparative study of prenatal development in Miniopterus schreibersii fuliginosus, Hipposideros armiger, and H. pratti. BMC Dev Biol 10:10, http://www.biomedcentral.com/1471-213X/10/10. Accessed 6 Jan 2012

    PubMed  Google Scholar 

  • Weinbeer M, Kalko EKV (2007) Ecological niche and phylogeny: the highly complex echolocation behavior of the trawling long-legged bat, Macrophyllum macrophyllum. Behav Ecol Sociobiol 61:1337–1348

    Google Scholar 

  • Wetterer AL, Rockman MV, Simmons NB (2000) Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems sex chromosomes and restriction sites. Bull Am Mus Nat Hist 248:1–200

    Google Scholar 

  • Willa KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55

    Google Scholar 

  • Wyant K, Adams RA (2007) Prenatal growth and development in the Angolan free-tailed bat, Mos condylura (Chiroptera: Molossidae). J Mammal 88:1248–1251

    Google Scholar 

  • Yokoyama K, Uchida A (2000) Evolutional implications of recapitulation concerning the round nose leaf seen at the middle prenatal period in the Japanese Lesser Horseshoe bat Rhinolophus cornutus cornutus. Ann Speleo Res Inst Japan 19:19–31

    Google Scholar 

  • Young R, Badyaev A (2007) Evolution of ontogeny: linking epigenetic remodeling and genetic adaptation in skeletal structures. J Integr Comp Biol 47:234–244

    Google Scholar 

  • Young NM, Chong HJ, Hu D, Hallgrìmsson B, Marcucio RS (2010) Qualitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape. Development 137:3405–3409

    PubMed  CAS  Google Scholar 

  • Yovel Y, Falk B, Moss CF, Ulanovsky N (2010) Optimal localization by pointing off axis. Science 327:701–704

    PubMed  CAS  Google Scholar 

  • Zhao H, Zhang S, Zuo M, Zhou J (2003) Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae. J Zool Lond 259:189–195

    Google Scholar 

  • Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S (2009) The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci USA 106:8980–8985

    PubMed  CAS  Google Scholar 

  • Zhuang Q, Müller R (2006) Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Phys Rev Lett. doi:10.1103/PhysRevLett.97.218701

    Google Scholar 

  • Zhuang Q, Müller R (2007) Numerical study of the effect of the noseleaf on biosonar beam forming in a horseshoe bat. Phys Rev E. doi:10.1103/PhysRevE.76.051902

    Google Scholar 

  • Zhuang Q, Wang X-M, Li M-X, Mao J, Wang F-X (2012) Noseleaf pit in Egyptian slit-faced bat as a doubly curved reflector. Europhys Lett. doi:10.1209/0295-5075/97/44001

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support of Rolf Müller from the following agencies: National Natural Science Foundation of China, Shandong Taishan Fund, Shandong University, NSF (Award Id 1053130), US Army Research Office (Grant Number 451069), and National Aeronautics and Space Administration (Grant Number NNX09AU54G). We further acknowledge Dane Webster for his rendering of Hipposideros (above). We extend a well-deserved thank you to several graduate students who have worked in the Müller laboratory: He Weikai, Yan Zhen, Lu Hongwang, and Gao Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Pedersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pedersen, S.C., Müller, R. (2013). Nasal-Emission and Nose leaves. In: Adams, R., Pedersen, S. (eds) Bat Evolution, Ecology, and Conservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7397-8_4

Download citation