Advertisement

Nasal-Emission and Nose leaves

  • Scott C. PedersenEmail author
  • Rolf Müller
Chapter

Abstract

Despite all other craniodental adaptations, the head of most bats must function as an ultrasonic emitter and receiver. Not all echolocation calls are ultrasonic, but all either are emitted from an open mouth (oral-emission) or are forced through the confines of the nasal passages (nasal-emission), and some nasal-emitting bats alternate between modes as the situation demands. The conspicuous baffles that surround the nostrils of nasal-emitting bats are not ornamental structures; rather, these “noseleaves” serve several important acoustic functions and are considered to be the earmark of nasal-emitting bats. For many readers, the difference between oral- and nasal-emission is viewed as a simple character state, most likely tied to the vagaries of foraging ecology in some tangential manner. However, Pedersen and Timm (Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 470–499, 2012) reviewed a considerable volume of literature discussing how the advent of nasal-emitting bats required a dramatic redesign of the microchiropteran rostrum and skull base during development. Nasal-emission is therefore a key innovation responsible for two of the most dramatic morphological radiations in the Chiroptera—phyllostomid and rhinolophid + hipposiderid bats. Herein, we summarize and update that review and then discuss recent advances in the numerical analysis of form and function in regard to the beamforming function of noseleaves (Müller, J Acoust Soc Am 128:1414–1425, 2010).

Keywords

Nasal Cavity Vocal Tract Beam Pattern Narrow Beam Nasal Passage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to acknowledge the financial support of Rolf Müller from the following agencies: National Natural Science Foundation of China, Shandong Taishan Fund, Shandong University, NSF (Award Id 1053130), US Army Research Office (Grant Number 451069), and National Aeronautics and Space Administration (Grant Number NNX09AU54G). We further acknowledge Dane Webster for his rendering of Hipposideros (above). We extend a well-deserved thank you to several graduate students who have worked in the Müller laboratory: He Weikai, Yan Zhen, Lu Hongwang, and Gao Li.

References

  1. Armstrong KN (2002) Morphometric divergence among populations of Rhinonicteris aurantius (Chiroptera: Hipposideridae) in Northern Australia. Aust J Zool 50:649–669Google Scholar
  2. Armstrong KN, Coles RB (2007) Echolocation call frequency differences between geographic isolates of Rhinonicteris aurantia (Chiroptera: Hipposideridae): implications of nasal chamber size. J Mammal 88:94–104Google Scholar
  3. Armstrong KN, Kerry LJ (2011) Modeling the prey detection performance of Rhinonicteris aurantia (Chiroptera: Hipposideridae) in different atmospheric conditions discounts the notional role of relative humidity in adaptive evolution. J Theor Biol 278:44–54PubMedGoogle Scholar
  4. Brinkløv S, Kalko EKV, Surlykke A (2009) Intense echolocation calls from two ‘whispering’ bats Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). J Exp Biol 212:11–20PubMedGoogle Scholar
  5. Brinkløv S, Kalko EKV, Surlykke A (2010) Dynamic adjustment of biosonar intensity to habitat clutter in the bat Macrophyllum macrophyllum (Phyllostomidae). Behav Ecol Sociobiol 64:1867–1874Google Scholar
  6. Brinkløv S, Jakobsen S, Ratcliffe JM, Kalko EKV, Surlykke A (2011) Echolocation call intensity and directionality in flying short-tailed fruit bats Carollia perspicillata (Phyllostomidae). J Acoust Soc Am 129:427–435PubMedGoogle Scholar
  7. Bullen RD, McKenzie NL (2008) Aerodynamic cleanliness in bats. Aust J Zool 56:281–296Google Scholar
  8. Carroll SB (2005) Evolution at two levels: on genes and form. PloS Biol. doi: 10.1371/journal.pbio.0030245 Google Scholar
  9. Chai Y, Maxson RE (2006) Recent advances in craniofacial morphogenesis. Dev Dyn 235:2353–2375PubMedGoogle Scholar
  10. Chen CH, Cretekos CJ, Rasweiler JJ, Behringer RR (2005) Hoxd13 expression in the developing limbs of the short-tailed fruit bat Carollia perspicillata. Evol Dev 7:130–141PubMedGoogle Scholar
  11. Cretekos CJ, Weatherbee S, Chen C, Badwaik N, Niswander L, Behringer R, Rasweiler J (2005) Embryonic staging system for the short-tailed fruit bat Carollia perspicillata a model organism for the mammalian order Chiroptera based upon timed pregnancies in captive-bred animals. Dev Dyn 233:721–738PubMedGoogle Scholar
  12. Cretekos CJ, Deng J-M, Green ED, NISC Comparative Sequencing Program, Rasweiler JJ, Behringer RR (2007) Isolation genomic structure and developmental expression of Fgf8 in the short-tailed fruit bat Carollia perspicillata. Int J Dev Biol 51:333–338PubMedGoogle Scholar
  13. Creuzet S, Couly G, Le Douarin NM (2005) Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies. J Anat 207:447–459PubMedGoogle Scholar
  14. Csorba G, Ujhelyi P, Thomas N (2003) Horseshoe bats of the World (Chiroptera: Rhinolophidae). Alana Books, ShropshireGoogle Scholar
  15. Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic, BurlingtonGoogle Scholar
  16. Davis JL, Santana SE, Dumont ER, Grosse IR (2010) Predicting bite force in mammals: two-dimensional versus three-dimensional lever models. J Exp Biol 213:1844–1851PubMedGoogle Scholar
  17. De Mey F, Reijniers J, Peremans H, Otani M, Firzlaff U (2008) Simulated head related transfer function of the phyllostomid bat Phyllostomus discolor. J Acoust Soc Am 124:2123–2132PubMedGoogle Scholar
  18. Debaeremaeker KR, Fenton MB (2003) Basisphenoid and basioccipital pits in microchiropteran bats. Biol J Linn Soc 78:215–233Google Scholar
  19. Dumont ER (2004) Patterns of diversity in cranial shape among plant-visiting bats. Acta Chiropt 6:59–74Google Scholar
  20. Dumont ER, Davis JL, Grosse IR, Burrows AM (2011) Finite element analysis of performance in the skulls of marmosets and tamarins. J Anat 218:151–162PubMedGoogle Scholar
  21. Dumont ER, Dávalos LM, Goldberg A, Santana SE, Rex K, Voigt CC (2012) Morphological innovation diversification and invasion of a new adaptive zone. Proc R Soc B 279:1797–1805PubMedGoogle Scholar
  22. Eick G, Jacobs DS, Matthee C (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886PubMedGoogle Scholar
  23. Firzlaf U, Schuller G (2003) Spectral directionality of the external ear of the lesser spear-nosed bat Phyllostomus discolor. Hear Res 181:27–39Google Scholar
  24. Fondon JW, Garner HR (2007) Detection of length-dependent effects of tandem repeat alleles by 3-D geometric decomposition of craniofacial variation. Dev Gen Evol 217:79–85Google Scholar
  25. Freeman PW (2000) Macroevolution in microchiroptera: recoupling morphology and ecology with phylogeny. Evol Ecol Res 2:317–335Google Scholar
  26. Freeman PW, Lemen CA (2010) Simple predictors of bite force in bats: the good the better and the better still. J Zool 282:284–290Google Scholar
  27. Frey R, Volodin I, Volodina E (2007) A nose that roars: anatomical specializations and behavioural features of rutting male saiga. J Anat. doi: 10.1111/j.1469-7580.2007.00818.x Google Scholar
  28. Funakoshi K, Nomura E, Matsukubol M, Wakital Y (2010) Postnatal growth and vocalization development of the Lesser Horseshoe bat Rhinolophus cornutus in the Kyushu District Japan. Mammal Study 35:65–78Google Scholar
  29. Gardiner JD, Dimitriadis G, Sellers WI, Codd JR (2008) The aerodynamics of big ears in the brown long-eared bat Plecotus auritus. Acta Chiropt 10:313–321Google Scholar
  30. Ghose K, Moss CF (2006) Steering by hearing: a bat’s acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law. J Neurosci 26:1704–1710PubMedGoogle Scholar
  31. Ghose K, Moss CF, Horiuchi TK (2007) Flying big brown bats emit a beam with two lobes in the vertical plane. J Acoust Soc Am 122:3717–3724PubMedGoogle Scholar
  32. Giannini NP, Simmons NB (2007) The chiropteran premaxilla: a reanalysis of morphological variation and its phylogenetic interpretation. Am Mus Novit 3585:1–44Google Scholar
  33. Giannini NP, Simmons NB (2012) Toward an integrative theory of on the origin of bat flight. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 353–384Google Scholar
  34. Giannini NP, Goswami A, Sanchez-Villagra MR (2006) Development of integumentary structures in Rousettus amplexicaudatus (Mammalia: Chiroptera: Pteropodidae) during late-embryonic and fetal stages. J Mammal 87:993–1001Google Scholar
  35. Giannini NP, Gunnell GF, Habersetzer J, Simmons NB (2012) Early evolution of body size in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 530–555Google Scholar
  36. Göbbel L (2000) The external nasal cartilages in chiroptera: significance for intraordinal relationships. J Mammal Evol 7:167–201Google Scholar
  37. Göbbel L (2002a) Morphology of the external nose in Hipposideros diadema and Lavia frons with comments on its diversity and evolution among leaf-nosed Microchiroptera. Cells Tissues Organs 170:39–60PubMedGoogle Scholar
  38. Göbbel L (2002b) Ontogenetic and phylogenetic transformations of the lacrimal-conducting apparatus among microchiroptera. Mammal Biol 67:338–357Google Scholar
  39. Griffin DR (1958) Listening in the dark. Yale University Press, New HavenGoogle Scholar
  40. Hallgrìmsson B, Lieberman DE (2008) Mouse models and the evolutionary developmental biology of the skull. J Integr Comp Biol 48:373–384Google Scholar
  41. Hallgrìmsson B, Lieberman DE, Liu W, Ford-Hutchinson AF, Jirik FR (2007) Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol Dev 9:76–91PubMedGoogle Scholar
  42. Hallgrìmsson B, Jamniczky H, Young NM, Rolian C, Parsons TE, Boughner JC, Marcucio RS (2009) Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol Biol 36:355–376PubMedGoogle Scholar
  43. Hand SJ (1998) Xenorhinos, a new genus of old world leaf-nosed bats (Microchiroptera: Hipposideridae) from the Australian Miocene. J Vertebr Paleontol 18:430–439Google Scholar
  44. Hand SJ, Archer M (2005) A new hipposiderid genus (microchiroptera) from an early miocene bat community in Australia. Palaeontology 48:371–383Google Scholar
  45. Hartley DI, Suthers RA (1987) The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat Carollia perspicillata. J Acoust Soc Am 82:1892–1900PubMedGoogle Scholar
  46. Hockman D, Cretekos CJ, Mason MK, Behringer RR, Jacobs DS, Illing N (2008) A second wave of Sonic hedgehog expression during the development of the bat limb. Proc Natl Acad Sci USA 105:16982–16987PubMedGoogle Scholar
  47. Jennings NV, Parsons S, Barlow KE, Gannon MR (2004) Echolocation calls and wing morphology of bats from the West Indies. Acta Chiropt 6:75–90Google Scholar
  48. Jones G, Holderied M (2007) Bat echolocation calls: adaptation and convergent evolution. Proc R Soc B Biol Sci 274:905–912Google Scholar
  49. Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149–156PubMedGoogle Scholar
  50. Kuc R (2010) Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation. J Acoust Soc Am 128:3190–3199PubMedGoogle Scholar
  51. Kuc R (2011) Bat noseleaf model: echolocation function design considerations and experimental verification. J Acoust Soc Am 129:3361–3366PubMedGoogle Scholar
  52. Larkey DJ, Datwyler SL, Lancaster WC (2012) Vertebral fusion in bats: phylogenetic patterns and functional relationships. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 500–529Google Scholar
  53. Li G, Wang J, Rossiter SJ, Jones G, Zhang S (2007) Accelerated FoxP2 evolution in echolocating bats. PloS One 2(9):e900. doi: 10.1371/journal.pone.0000900 PubMedGoogle Scholar
  54. Li G, Wang J, Rossiter SJ, Jones G, Cotton JA, Zhang S (2008) The hearing gene prestin reunites echolocating bats. Proc Natl Acad Sci USA 105:13959–13964PubMedGoogle Scholar
  55. Liu Y, Feng J, Jiang YL, Wu L, Sun KP (2007) Vocalization development of greater horseshoe bat Rhinolophus ferrumequinum (Rhinolophidae Chiroptera). Folia Zool 52:126–136Google Scholar
  56. Liu Z, Li S, Wang W, Xu D, Murphy RW, Shi P (2011) Parallel evolution of KCNQ4 in echolocating bats. PLoS One 6(10):e26618. doi: 10.1371/journal.pone.0026618 PubMedGoogle Scholar
  57. Ma J, Müller R (2011) A method for characterizing the biodiversity in bat pinnae as a basis for engineering analysis. Bioinspir Biomim. doi: 10.1088/1748-3182/6/2/026008 Google Scholar
  58. Marcías S, Mora EC, Koch C, von Helversen O (2005) Echolocation behavior of Phyllops falcatus (Chiroptera: Phyllostomidae): unusual frequency range of the first harmonic. Acta Chiropt 7:275–283Google Scholar
  59. Marcucio RS, Young NM, Hu D, Hallgrìmsson B (2011) Mechanisms that underlie co-variation of the brain and face. Genesis 49:177–189PubMedGoogle Scholar
  60. Monteiro LR, Nogueira MR (2011) Evolutionary processes in the radiation of phyllostomid bats. BMC Evol Biol 11:137, http://www.biomedcentral.com/1471-2148/11/137 PubMedGoogle Scholar
  61. Mora EC, Marcías S (2006) Echolocation calls of Poey’s flower bat (Phyllonycteris poeyi) unlike those of other phyllostomids. Naturwissenschaften. doi: 10.1007/s00114-006-0198-7 PubMedGoogle Scholar
  62. Morsli H, Tuorto F, Choo D, Postiglione MP, Simeone A, Wu DK (1999) Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development 126:2335–2343PubMedGoogle Scholar
  63. Müller R (2010) Numerical analysis of biosonar beamforming mechanisms and strategies in bats. J Acoust Soc Am 128:1414–1425PubMedGoogle Scholar
  64. Müller R, Kuc R (2000) Foliage echoes: a probe into the ecological acoustics of bat echolocation. J Acoust Soc Am 108:836–845PubMedGoogle Scholar
  65. Müller GB, Newman SA (2005) The innovation triad: an EvoDevo agenda. J Exp Zool B 304:487–503Google Scholar
  66. Müller B, Goodman SM, Peichi L et al (2007) Cone photoreceptor diversity in the retinas of fruit bats (megachiroptera). Brain Behav Evol 70:90–104PubMedGoogle Scholar
  67. Müller B, Glösmann M, Peichl L, Knop GC, Hagemann C, Ammermüller J (2009) Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One 4(7):e6390. doi: 10.1371/journal.pone.0006390 PubMedGoogle Scholar
  68. Nelson JE, Christian KA, Baudinette RV (2007) Anatomy of the nasal passages of three species of Australian bats in relation to water loss. Aust J Zool 55:57–62Google Scholar
  69. Nogueira MR, Peracchi AL, Monteiro LR (2009) Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Funct Ecol 23:715–723Google Scholar
  70. Nolte M, Hockman D, Cretekos C, Behringer R, Rasweiler J (2008) Embryonic staging system for the black mastiff bat Molossus rufus (Molossidae) correlated with structure-function relationships in the adult. Anat Rec 292:155–168Google Scholar
  71. Odendaal LJ, Jacobs DS (2011) Morphological correlates of echolocation frequency in the endemic Cape horseshoe bat Rhinolophus capensis (Chiroptera: Rhinolophidae). J Comp Physiol A 197:435–446Google Scholar
  72. Pedersen SC (1995) Cephalometric correlates of echolocation in the Chiroptera II: fetal development. J Morphol 225:107–123Google Scholar
  73. Pedersen SC (2000) Skull growth and the acoustical axis of the head in bats. In: Adams RA, Pedersen SC (eds) Ontogeny functional ecology and evolution of bats. Cambridge University Press, Cambridge, pp 174–213Google Scholar
  74. Pedersen SC, Timm DW (2012) Cephalometry and evolutionary constraint in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils molecules and morphology. Cambridge University Press, Cambridge, pp 470–499Google Scholar
  75. Pedersen SC, Riede T, Nguyen T, Lu H, Ma J, Yan Z, He W, Zhang Z, Wang F, Müller R (2009) Reconstruction of the rhinolophid vocal tract. Bat Res News 50:131AGoogle Scholar
  76. Radlanski RJ, Renz H (2006) Genes forces and forms: mechanical aspects of prenatal craniofacial development. Dev Dyn 235:1219–1229PubMedGoogle Scholar
  77. Reijniers J, Vanderelst D, Peremans H (2010) Morphology-induced information transfer in bat sonar. Phys Rev Lett. doi: 10.1103/PhysRevLett.105.148701 PubMedGoogle Scholar
  78. Santana SE, Grosse IR, Dumont ER (2012) Dietary hardness loading behavior and the evolution of skull form in bats. Evolution 66:2587–2598PubMedGoogle Scholar
  79. Schnitzler H-U, Grinnell AD (1977) Directional sensitivity of echolocation in the horseshoe bat Rhinolophus ferrumequinum. J Comp Physiol A 166:51–61Google Scholar
  80. Sears KE, Behringer RR, Rasweiler JJ, Niswander LA (2006) Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc Natl Acad Sci USA 103:6581–6586PubMedGoogle Scholar
  81. Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, Palaeochiropteryx to extant bat lineages with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235:1–182Google Scholar
  82. Soukup V, Horácek I, Cerny R (2013) Development and evolution of the vertebrate primary mouth. J Anat 222:79–99PubMedGoogle Scholar
  83. Springer MS, Teeling EC, Madsen O, Stanhope MJ, Jong WW (2001a) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98:6241–6246PubMedGoogle Scholar
  84. Springer MS, Teeling EC, Stanhope MJ (2001b) External nasal cartilages in bats: evidence for microchiropteran monophyly? J Mammal Evol 8:231–236Google Scholar
  85. Surlykke A, Kalko EKV (2008) Echolocating bats cry out loud to detect their prey. PLoS ONE. doi: 10.1371/journal.pone.0002036 PubMedGoogle Scholar
  86. Surlykke A, Moss C (2000) Echolocation behavior of big brown bats Eptesicus fuscus in the field and the laboratory. J Acoust Soc Am 108:2419–2429PubMedGoogle Scholar
  87. Surlykke A, Ghose K, Moss CF (2009a) Acoustic scanning of natural scenes by echolocation in the big brown bat Eptesicus fuscus. J Exp Biol 212:1011–1020PubMedGoogle Scholar
  88. Surlykke A, Pedersen SB, Jakobsen L (2009b) Echolocating bats emit a highly directional sonar sound beam in the field. Proc R Soc B 276:853–860PubMedGoogle Scholar
  89. ten Berge D, Brouwer A, Korving J, Martin JF, Meijlink F (1998) Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region inner ear and limbs. Development 125:3831–3842PubMedGoogle Scholar
  90. Vanderelst D, De Mey F, Peremans H (2010a) Simulating the morphological feasibility of adaptive beamforming in bats. In: Doncieux et al. (eds) From animals to animats 11. Lecture notes in computer science, vol 6226. Springer, Heidelberg, pp 136–145Google Scholar
  91. Vanderelst D, De Mey F, Peremans H, Geipel I, Kalko EKV (2010b) What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS One. doi: 10.1371/journal.pone.0011893 PubMedGoogle Scholar
  92. Vanderelst D, Reijniers J, Peremans H (2011) The furrows of Rhinolophidae revisited. J R Soc Interface. doi: 10.1098/rsif.2011.0812 Google Scholar
  93. Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB (2010) A bony connection signals laryngeal echolocation in bats. Nature 463:939–942PubMedGoogle Scholar
  94. Wang X, Müller R (2009) Pinna-rim skin folds narrow the sonar beam in the lesser false vampire bat (Megaderma spasma). J Acoust Soc Am 126:3311–3318PubMedGoogle Scholar
  95. Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL, Tsao H, LI W (2004) Molecular evolution of bat color vision genes. Mol Biol Evol 21:295–302PubMedGoogle Scholar
  96. Wang Z, Han N, Racey PA, Ru B, He G (2010) A comparative study of prenatal development in Miniopterus schreibersii fuliginosus, Hipposideros armiger, and H. pratti. BMC Dev Biol 10:10, http://www.biomedcentral.com/1471-213X/10/10. Accessed 6 Jan 2012PubMedGoogle Scholar
  97. Weinbeer M, Kalko EKV (2007) Ecological niche and phylogeny: the highly complex echolocation behavior of the trawling long-legged bat, Macrophyllum macrophyllum. Behav Ecol Sociobiol 61:1337–1348Google Scholar
  98. Wetterer AL, Rockman MV, Simmons NB (2000) Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems sex chromosomes and restriction sites. Bull Am Mus Nat Hist 248:1–200Google Scholar
  99. Willa KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55Google Scholar
  100. Wyant K, Adams RA (2007) Prenatal growth and development in the Angolan free-tailed bat, Mos condylura (Chiroptera: Molossidae). J Mammal 88:1248–1251Google Scholar
  101. Yokoyama K, Uchida A (2000) Evolutional implications of recapitulation concerning the round nose leaf seen at the middle prenatal period in the Japanese Lesser Horseshoe bat Rhinolophus cornutus cornutus. Ann Speleo Res Inst Japan 19:19–31Google Scholar
  102. Young R, Badyaev A (2007) Evolution of ontogeny: linking epigenetic remodeling and genetic adaptation in skeletal structures. J Integr Comp Biol 47:234–244Google Scholar
  103. Young NM, Chong HJ, Hu D, Hallgrìmsson B, Marcucio RS (2010) Qualitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape. Development 137:3405–3409PubMedGoogle Scholar
  104. Yovel Y, Falk B, Moss CF, Ulanovsky N (2010) Optimal localization by pointing off axis. Science 327:701–704PubMedGoogle Scholar
  105. Zhao H, Zhang S, Zuo M, Zhou J (2003) Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae. J Zool Lond 259:189–195Google Scholar
  106. Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S (2009) The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci USA 106:8980–8985PubMedGoogle Scholar
  107. Zhuang Q, Müller R (2006) Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Phys Rev Lett. doi: 10.1103/PhysRevLett.97.218701 Google Scholar
  108. Zhuang Q, Müller R (2007) Numerical study of the effect of the noseleaf on biosonar beam forming in a horseshoe bat. Phys Rev E. doi: 10.1103/PhysRevE.76.051902 Google Scholar
  109. Zhuang Q, Wang X-M, Li M-X, Mao J, Wang F-X (2012) Noseleaf pit in Egyptian slit-faced bat as a doubly curved reflector. Europhys Lett. doi: 10.1209/0295-5075/97/44001 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biology and MicrobiologySouth Dakota State UniversityBrookingsUSA
  2. 2.Department of Mechanical EngineeringVirginia TechBlacksburgUSA

Personalised recommendations