Skip to main content

Responses of Bats to Climate Change: Learning from the Past and Predicting the Future

  • Chapter
  • First Online:

Abstract

Climate change is widely regarded as being of major and growing importance for influencing the future distribution and abundance of organisms. However, the potential effect on bats has received little attention. Herein we provide some general background for climate change and its broader context to biodiversity. We use predicted climate-induced ‘universal responses’ by organisms and data from historical (Holocene) events to better predict how bats may respond. We also outline how climate change effects on bats will create challenges for populations in the future, how best to mitigate impacts and current research needs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams RA (2010) Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology 91:2437–2445

    Article  PubMed  Google Scholar 

  • Adams RA, Hayes MA (2008) Water availability and successful lactation by bats as related to climate change in arid regions of western North America. J Anim Ecol 77:1115–1121

    Article  PubMed  Google Scholar 

  • Alley RB, Marotzke J, Nordhaus WD, Overpeck JD, Peteet DM, Pielke RA Jr, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010

    Article  PubMed  CAS  Google Scholar 

  • Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species' traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689

    Article  PubMed  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Araújo MB, Nogués-Bravo D, Diniz-Filho JAF, Haywood HM, Valdes PJ, Rahbek C (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31:8–15

    Article  Google Scholar 

  • Arlettaz R, Christe P, Lugon A, Perrin N, Vogel P (2001) Food availability dictates the timing of parturition in insectivorous mouse-eared bats. Oikos 95:105–111

    Article  Google Scholar 

  • Arnett EB et al (2008) Patterns of bat fatalities at wind energy facilities in North America. J Wildl Manage 72:61–78

    Article  Google Scholar 

  • Barclay RMR (2012) Variable variation: annual and seasonal changes in offspring sex ratio in a bat. PLoS One 7:e36344. doi:10.1371/journal.pone.0036344

    Article  PubMed  CAS  Google Scholar 

  • Barnosky AD et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  PubMed  CAS  Google Scholar 

  • Battersby JE (2010) Guidelines for surveillance and monitoring of European bats. EUROBATS Publication series 5, Bonn

    Google Scholar 

  • Bernstein N et al. (2007) Climate change 2007: synthesis report. Intergovernmental Panel on Climate Change

    Google Scholar 

  • Bisson I-A, Safi K, Holland RA (2009) Evidence for repeated independent evolution of migration in the largest family of bats. PLoS One 4:e7504. doi:10.1371/journal.pone.0007504-

    Article  PubMed  CAS  Google Scholar 

  • Blant M, Moretti M, Tinner W (2010) Effect of climate and palaeoenvironmental changes on the occurrence of Holocene bats in the Swiss Alps. The Holocene 20:711–721

    Article  Google Scholar 

  • Bogdanowicz W (1990) Geographic variation and taxonomy of Daubenton’s bat, Myotis daubentonii, in Europe. J Mammal 71:205–218

    Article  Google Scholar 

  • Boyles JG, Dunbar MB, Whitaker JO Jr (2006) Activity following arousal in winter in North American vespertilionid bats. Mammal Rev 36:267–280

    Article  Google Scholar 

  • Brodie J, Post E, Laurance WF (2012) Climate change and tropical biodiversity: a new focus. Trends Ecol Evol 27:145–150

    Article  PubMed  Google Scholar 

  • Butchart SHM et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  PubMed  CAS  Google Scholar 

  • Cannon RJC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis in non-indigenous species. Glob Change Biol 4:785–796

    Article  Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J et al (2009) The last glacial maximum. Science 325:710–714

    Article  PubMed  CAS  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  PubMed  Google Scholar 

  • Cryan PM, Meteyer CU, Boyles JG, Blehert DS (2010) Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol 8:135

    Article  PubMed  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    Article  PubMed  CAS  Google Scholar 

  • Dixon MD (2011) Post-Pleistocene range expansion of the recently imperiled eastern little brown bat (Myotis lucifugus lucifugus) from a single southern refugium. Ecol Evol 1:191–200

    Article  PubMed  Google Scholar 

  • Downs CT, Zungu MM, Brown M (2012) Seasonal effects on thermoregulatory abilities of the Wahlberg’s epauletted fruit bat (Epomophorus wahlbergi) in KwaZulu-Natal, South Africa. J Therm Biol 37:144–150

    Article  Google Scholar 

  • Epstein PR, Chivian E, Frith K (2003) Emerging diseases threaten conservation. Environ Health Perspect 111:506–507

    Article  Google Scholar 

  • Erwin DH (2009) Climate as a driver of evolutionary change. Curr Biol 19:575–583

    Article  CAS  Google Scholar 

  • Flanders J, Jones G, Benda P, Dietz C, Zhang S et al (2009) Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data. Mol Ecol 18:306–318

    Article  PubMed  CAS  Google Scholar 

  • Flanders J, Wei L, Rossiter SJ, Zhang S (2011) Identifying the effects of the Pleistocene on the greater horseshoe bat, Rhinolophus ferrumequinum, in East Asia using ecological niche modelling and phylogenetic analyses. J Biogeogr 38:439–452

    Article  Google Scholar 

  • Fleming TH, Geiselman C, Kress WJ (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot 104:1017–1043

    Article  PubMed  Google Scholar 

  • Francis CM, Borisenko AV, Ivanova NV, Eger JL, Lim BK et al (2010) The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS One 5:e12575. doi:10.1371/journal.pone.0012575

    Article  PubMed  CAS  Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB et al (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553

    Article  Google Scholar 

  • Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. PNAS 104:1278–1282

    Article  PubMed  CAS  Google Scholar 

  • Frick WF, Reynolds DS, Kunz TH (2010) Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J Anim Ecol 79:128–136

    Article  PubMed  Google Scholar 

  • Gannon MR, Willig MR (2009) Islands in the storm: disturbance ecology of plant-visiting bats in the hurricane-prone island of Puerto Rico. In: Fleming TH, Racey PA (eds) Island bats. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291

    Article  PubMed  Google Scholar 

  • Global Wind Energy Council (2012) Global wind statistics 2011. Global Wind Energy Council, Brussels

    Google Scholar 

  • Goerlitz HR, ter Hofsted HM, Zeale MRK, Jones G, Holderied MW (2010) An aerial-hawking bat uses stealth echolocation to counter moth hearing. Curr Biol 20:1568–1572

    Article  PubMed  CAS  Google Scholar 

  • Gregory RD, Willis SG, Jiguet F, Vorisek P, Klvanová A et al (2009) An indicator of the impact of climate change on European bird populations. PLoS One 4:e4678. doi:10.1371/journal.pone.0004678-

    Article  PubMed  CAS  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW et al (2006) Global temperature change. PNAS 103:14288–14293

    Article  PubMed  CAS  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455

    Article  Google Scholar 

  • Hoffmann M et al (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509

    Article  PubMed  CAS  Google Scholar 

  • Hope PR, Jones G (2012) Warming up for dinner: torpor and arousal in hibernating Natterer’s bats (Myotis nattereri) studies by radio telemetry. J Comp Physiol. doi:10.1007/s00360-011-0631-x

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ et al (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, IL

    Google Scholar 

  • Hughes AC, Satasook C, Bates PJJ, Bumrungsri S, Jones G (2012) The projected effects of climatic and vegetation changes on the distribution and diversity of Southeast Asian bats. Glob Change Biol 18(6):1854–1865

    Article  Google Scholar 

  • Humphries MM, Thomas DW, Speakman JR (2002) Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418:313–316

    Article  PubMed  CAS  Google Scholar 

  • Husby A, Nussey DH, Visser ME, Wilson AJ, Sheldon BC et al (2010) Contrasting patterns of phenotypic plasticity in reproductive traits in two great tit (Parus major) populations. Evolution 64:2221–2237

    PubMed  Google Scholar 

  • Ibáñez C (1997) Winter reproduction in the greater mouse-eared bat (Myotis myotis) in South Iberia. J Zool 243:836–840

    Article  Google Scholar 

  • Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26:194–220

    Article  Google Scholar 

  • Jones G, Jacobs DS, Kunz TH, Willig MR, Racey PA (2009) Carpe noctem: the importance of bats as bioindicators. Endanger Species Res 8:93–115

    Article  Google Scholar 

  • Kaiser SI, Becker RT, Steuber T, Aboussalam SZ (2011) Climate-controlled mass extinctions, facies, and sea-level changes around the Devonian–Carboniferous boundary in the eastern Anti-Atlas (SE Morocco). Palaeogeogr Palaeoclimatol Palaeoecol 310:340–364

    Article  Google Scholar 

  • Kerth G, Petrov B, Conti A, Anastasov D, Weishaar M et al (2008) Communally breeding Bechstein’s bats have a stable social system that is independent from the postglacial history and location of the populations. Mol Ecol 17:2368–2381

    Article  PubMed  CAS  Google Scholar 

  • Kingston T (2010) Research priorities for bat conservation in Southeast Asia: a consensus approach. Biodivers Conserv 19:471–484

    Article  Google Scholar 

  • Kunz TH, Arnett EB, Erickson WP, Hoar AR, Johnson GD et al (2007) Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Front Ecol Environ 5:315–324

    Article  Google Scholar 

  • LaVal RK (2004) Impact of global warming and locally changing climate on tropical cloud forest bats. J Mammal 85:237–244

    Article  Google Scholar 

  • Liu J-N, Karasov WH (2011) Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan. J Comp Physiol B 181:125–135

    Article  PubMed  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB et al (2009) The velocity of climate change. Nature 462:1052–1057

    Article  PubMed  CAS  Google Scholar 

  • Lundy M, Montgomery I, Russ J (2010) Climate change-linked range expansion of Nathusius’ pipistrelle bat, Pipistrellus nathusii (Keyserling & Blasius, 1839). J Biogeogr 37:2232–2242

    Article  Google Scholar 

  • Martinez-Meyer E, Peterson AT, Hargroves WW (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob Ecol Biogeogr 13:305–314

    Article  Google Scholar 

  • McLachlan JS, Clark JS, Manis PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098

    Article  Google Scholar 

  • McMahon SM, Harrison SP, Armbruster WS, Bartlein PJ, Beale CM et al (2011) Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol Evol 26:249–259

    Article  PubMed  Google Scholar 

  • Miller-Rushing AJ, Lloyd-Evans TL, Primack RB, Satzinger P (2008) Bird migration times, climate change, and changing population sizes. Glob Change Biol 14:1959–1972

    Article  Google Scholar 

  • Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381

    Article  PubMed  CAS  Google Scholar 

  • Muscarella R, Fleming TH (2007) The role of frugivorous bats in tropical forest succession. Biol Rev 82:573–590

    Article  PubMed  Google Scholar 

  • Nakicenovic N, Davidson O, Davis G, Grübler A, Kram T, et al. (2000) Emission scenarios. International panel on climate change

    Google Scholar 

  • Newson SE, Mendes S, Crick HQP, Dulvy NK, Houghton JDR et al (2009) Indicators of the impact of climate change on migratory species. Endanger Species Res 7:101–113

    Article  Google Scholar 

  • Nogués-Bravo D, Ohlemüller R, Batra P, Araújo MB (2010) Climate predictors of late Quaternary extinctions. Evolution 64:2442–2449

    PubMed  Google Scholar 

  • Pall P, Aina T, Stone DA, Stott PA, Nozawa T et al (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470:382–385

    Article  PubMed  CAS  Google Scholar 

  • Palmeirim JM (1990) Bats of Portugal: zoogeography and systematics. Miscellaneous publication – University of Kansas, Museum of Natural History 82:1–53

    Google Scholar 

  • Park KJ, Jones G, Ransome R (2000) Arousal and activity of hibernating Greater horseshoe bats (Rhinolophus ferrumequinum). Funct Ecol 14:580–588

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pedersen SC, Kwiecinski GG, Larsen PA, Genoways HG, Morton MN (2009) Fruit bats of Montserrat: population fluctuation in response to hurricanes and volcanoes over a 25 year period 1979–2004. In: Fleming TH, Racey PA (eds) Island bats. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Pereira HM et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  PubMed  CAS  Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827

    Article  Google Scholar 

  • Peterson TC, Zhang X, Brunet-India M, Vázquez-Aguirre JL (2008) Changes in North American extremes derived from daily weather data. J Geophys Res 113:D07113. doi:10.1029/2007JD009453

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Powell VJ, Wehneh SC (2003) A new estimate for the population size of the critically endangered Rodrigues fruit bat Pteropus rodricensis. Oryx 37:353–357

    Article  Google Scholar 

  • Racey PA (1972) Aspects of reproduction in some heterothermic bats. PhD thesis, University of London

    Google Scholar 

  • Racey PA (1973) Environmental factors affecting the length of gestation in heterothermic bats. J Reprod Fertil 19(Suppl):175–189

    CAS  Google Scholar 

  • Racey PA (1982) Ecology of reproduction. In: Kunz TH (ed) Ecology of bats. Plenum, New York, pp 57–104

    Chapter  Google Scholar 

  • Racey PA, Swift SM (1981) Variation in gestation length in a colony of pipistrelle bats (Pipistrellus pipistrellus) from year to year. J Reprod Fertil 61:123–129

    Article  PubMed  CAS  Google Scholar 

  • Ransome RD, McOwat TP (1994) Birth timing and population changes in greater horseshoe bat colonies (Rhinolophus ferrumequinum) are synchronised by climatic temperature. Zool J Linn Soc 112:337–351

    Article  Google Scholar 

  • Razgour O, Korine C, Saltz D (2010) Pond characteristics as determinants of species diversity and community composition in desert bats. Anim Conserv 13:505–513

    Article  Google Scholar 

  • Rebelo H, Brito JC (2007) Bat guild structure and habitat use in the Sahara desert. Afr J Ecol 45:228–230

    Article  Google Scholar 

  • Rebelo H, Rainho A (2009) Bat conservation and large dams: spatial changes in habitat use caused by Europe’s largest reservoir. Endanger Species Res 8:61–68

    Article  Google Scholar 

  • Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Change Biol 16:561–576

    Article  Google Scholar 

  • Rebelo H, Froufe E, Brito JC, Russo D, Cistrone L et al (2012) Postglacial colonization of Europe by the barbastelle bat: agreement between molecular data and past predictive modelling. Mol Ecol 21:2761–2774

    Article  PubMed  Google Scholar 

  • Riede K (2001) The global register of migratory species database, GIS maps and threat analysis. Landwirtschaftsverlag, Münster

    Google Scholar 

  • Rockström J et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues L, Palmeirim JM (2008) Migratory behaviour of the Schreiber’s bat: When, where and why do cave bats migrate in a Mediterranean region? J Zool 274:116–125

    Article  Google Scholar 

  • Rodrigues L, Zahn A, Rainho A, Palmeirim JM (2003) Contrasting the roosting behaviour and phenology of an insectivorous bat (Myotis myotis) in its southern and northern distribution ranges. Mammalia 67:321–335

    Article  Google Scholar 

  • Rossiter S, Benda P, Dietz C, Zhang S, Jones G (2007) Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: implications for population history, taxonomy and conservation. Mol Ecol 16:4699–4714

    Article  PubMed  CAS  Google Scholar 

  • Ruedi M, Castella V (2003) Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey. Mol Ecol 12:1527–1540

    Article  PubMed  CAS  Google Scholar 

  • Ruedi M, Walter S, Fischer MC, Scaravelli D, Excoffier L et al (2008) Italy as a major Ice Age refuge area for the bat Myotis myotis (Chiroptera: Vespertilionidae) in Europe. Mol Ecol 17:1801–1814

    Article  PubMed  CAS  Google Scholar 

  • Ruffell J, Guilbert J, Parsons S (2009) Translocation of bats as a conservation strategy: previous attempts and potential problems. Endanger Species Res 8:25–31

    Article  Google Scholar 

  • Sachanowicz K, Wower A, Bashta A-T (2006) Further range extension of Pipistrellus kuhlii (Kuhl, 1817) in central and eastern Europe. Acta Chiropterol 8:543–548

    Article  Google Scholar 

  • Safi K, Kerth G (2004) A comparative analysis of specialization and extinction risk in Temperate-zone bats. Conserv Biol 18:1293–1303

    Article  Google Scholar 

  • Secord R, Bloch JI, Chester SGB, Boyer DM, Wood AR et al (2012) Evolution of the earliest horses driven by climate change in the Paleocene-Eocene thermal maximum. Science 335:959–962

    Article  PubMed  CAS  Google Scholar 

  • Sherwin HA, Montgomery WI, Lundy MG (2012) The impact and implications of climate change for bats. Mammal Rev (in press). doi:10.1111/j.1365-2907.2012.00214.x

  • Simmons N (2005) Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the World: a taxonomic and geographic reference. John Hopkins University Press, Baltimore

    Google Scholar 

  • Storz JF, Balasingh J, Bhat H, Nathan PT, Doss DPS et al (2001) Clinal variation in body size and sexual dimorphism in an Indian fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae). Biol J Linn Soc 72:17–31

    Article  Google Scholar 

  • Thackeray SJ et al (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16:3304–3313

    Article  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG et al (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD et al (2004) Extinction risk from climate change. Nature 427:145–148

    Google Scholar 

  • Thomas CD, Franco MAA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Article  PubMed  Google Scholar 

  • Thomas CD et al (2011) A framework for assessing threats and benefits to species responding to climate change. Methods Ecol Evol 2:125–142

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357

    Article  Google Scholar 

  • Tupinier Y (1977) Description d'une chauve-souris nouvelle: Myotis nathalinae nov. sp. (Chiroptera - Vespertilionidae). Mammalia 41:327–340

    Article  Google Scholar 

  • Turbill C (2008) Winter activity of Australian tree-roosting bats: influence of temperature and climatic patterns. J Zool 276:285–290

    Article  Google Scholar 

  • Tzedakis PC, Raynaud D, McManus JF, Berger A, Brovkin V et al (2009) Interglacial diversity. Nat Geosci 2:751–755

    Article  CAS  Google Scholar 

  • Virkkala R, Heikkinen RK, Leikola N, Luoto M (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353

    Article  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc Lond 272B:2561–2569

    Article  Google Scholar 

  • Visser ME, Holleman LJM, Gienapp P (2006) Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147:164–172

    Article  PubMed  Google Scholar 

  • Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL et al (2007) Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS One 5:e563. doi:10.1371/journal.pone.0000563-

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Webb PI, Speakman JR, Racey PA (1995) Evaporative water loss in two sympatric species of vespertilionid bat, Plecotus auritus and Myotis daubentonii: relation to foraging mode and implications for roost site selection. J Zool 235:269–278

    Article  Google Scholar 

  • Welbergen JA, Klose SM, Markus N, Eby P (2008) Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc Lond 275B:419–425

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, non-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Article  Google Scholar 

  • Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268

    Article  Google Scholar 

  • You Y, Sun K, Xu L, Wang L, Jiang T et al (2010) Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii. BMC Evol Biol 10:208

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, G., Rebelo, H. (2013). Responses of Bats to Climate Change: Learning from the Past and Predicting the Future. In: Adams, R., Pedersen, S. (eds) Bat Evolution, Ecology, and Conservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7397-8_22

Download citation

Publish with us

Policies and ethics