Skip to main content

How to Grow a Bat Wing

  • Chapter
  • First Online:
Bat Evolution, Ecology, and Conservation

Abstract

The earliest bats underwent an extraordinary limb-to-wing transition during their evolutionary history and successfully colonized the aerial habitat. Unfortunately, the bat fossil record lacks transitional fossils documenting this event, thereby challenging scientists to reconstruct these changes in their body plan based on the molecular and morphological events occurring throughout embryonic development. This chapter reviews how recent evolutionary developmental biologists have begun to elucidate how bats got their wings based on molecular studies in embryonic and fetal bats. This chapter first summarizes our current understanding of the processes regulating basic mammalian limb development in terrestrial taxa, and then discusses how bat limb development is unique in its formation of a novel limb pattern, wing membrane, and elongated digits. Lastly, this chapter outlines novel areas ripe for future study in bat evolution and development. Taken together, these data offer insights into the molecular and gross morphological events that drive innovation and molecular diversification in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi AA (2011) Evolution of vertebrate appendicular structures: Insight from genetic and palaeontological data. Dev Dyn 240(5):1005–1016. doi:10.1002/dvdy.22572

    PubMed  Google Scholar 

  • Adams RA (1992) Comparative skeletogenesis of the forearm of the little brown bat (Myotis lucifugus) and the norway rat (Rattus norvegicus). J Morphol 214(3):251–260. doi:10.1002/jmor.1052140302

    PubMed  CAS  Google Scholar 

  • Adams RA (2008) Morphogenesis in bat wings: linking development, evolution and ecology. Cells Tissues Organs 187(1):13–23

    PubMed  Google Scholar 

  • Arita HT, Fenton MB (1997) Flight and echolocation in the ecology and evolution of bats. Trends Ecol Evol 12:53–58

    PubMed  CAS  Google Scholar 

  • Behringer RR, Eakin GS, Renfree MB (2005) Mammalian diversity: gametes, embryos and reproduction. Reproduction, Fertility and Development 18(2):99–107. doi:10.1071/RD05137

    Google Scholar 

  • Behringer RR, Rasweiler JJ, Chen C-H, Cretekos CJ (2009) Genetic regulation of mammalian diversity. Cold Spring Harb Symp Quant Biol 74:297–302. doi:10.1101/sqb.2009.74.035

    PubMed  CAS  Google Scholar 

  • Boulet AM, Capecchi MR (2004) Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 131:299–309

    PubMed  CAS  Google Scholar 

  • Carroll SB (2008) Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1):25–36

    PubMed  CAS  Google Scholar 

  • Chen Y, Zhao X (1998) Shaping limbs by apoptosis. J Exp Zool 282:691–702

    PubMed  CAS  Google Scholar 

  • Chen C-H, Cretekos CJ, Rasweiler JJ, Behringer RR (2005a) Hoxd13 expression in the developing limbs of the short-tailed fruit bat, Carollia perspicillata. Evol Dev 7(2):130–141. doi:10.1111/j.1525-142X.2005.05015.x

    CAS  Google Scholar 

  • Chen CH, Cretekos CJ, Rasweiler JJ, Behringer RR (2005b) Hoxd13 expression in the developing limbs of the short-tailed fruit bat, Carollia perspicillata. Evol Dev 7(2):130–141

    CAS  Google Scholar 

  • Cohn MJ, Tickle C (1999) Developmental basis of limblessness and axial patterning in snakes. Nature 399(6735):474–479

    PubMed  CAS  Google Scholar 

  • Cooper KL, Tabin CJ (2009) Developmental patterning of the limb skeleton. In: Pourquie O (ed) The skeletal system. Cold Spring Harbor Laboratory Press, New York, NY, pp 19–39

    Google Scholar 

  • Cooper KL, Hu JK-H, ten Berge D, Fernandez-Teran M, Ros MA, Tabin CJ (2011a) Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science 332(6033):1083–1086. doi:10.1126/science.1199499

    PubMed  CAS  Google Scholar 

  • Cooper LN, Armfield BA, Thewissen JGM (2011b) Evolution of the apical ectoderm in the developing vertebrate limb. In: Hallgrimsson B, Hall BK (eds) Epigenetics: linking genotype and phenotype in development and evolution. University of California Press, Berkeley, p 472

    Google Scholar 

  • Cretekos CJ, Rasweiler JJ, Behringer RR RR (2001) Comparative studies on limb morphogenesis in mice and bats: a functional genetic approach towards a molecular understanding of diversity in organ formation. Reprod Fertil Dev 13(8):691–695

    PubMed  CAS  Google Scholar 

  • Cretekos CJ, Weatherbee SD, Chen C-H, Badwaik NK, Niswander L, Behringer R, Rasweiler JJ (2005a) Embryonic staging system for the short-tailed fruit bat, Carollia perspicillata, a model organism for the mammalian order Chiroptera, based upon timed pregnancies in captive-bred animals. Dev Dyn 233(3):721–738

    PubMed  Google Scholar 

  • Cretekos CJ, Weatherbee SD, Chen CH, Badwaik NK, Niswander L, Behringer RR, Rasweiler JJ (2005b) Embryonic staging system for the short-tailed fruit bat, Carollia perspicillata, a model organism for the mammalian order Chiroptera, based upon timed pregnancies in captive-bred animals. Dev Dyn 233:721–738

    PubMed  Google Scholar 

  • Cretekos CJ, Deng J-M, Green ED, Rasweiler JJ, Behringer RR (2007a) Isolation, genomic structure and developmental expression of Fgf8 in the short-tailed fruit bat, Carollia perspicillata. The International Journal Of Developmental Biology 51(4):333–338

    PubMed  CAS  Google Scholar 

  • Cretekos CJ, Deng JM, Green ED, Rasweiler JJ, Behringer RR (2007b) Isolation, genomic structure and developmental expression of Fgf8 in the short-tailed fruit bat, Carollia perspicillata. Int J Dev Biol 51(4):333–338

    PubMed  CAS  Google Scholar 

  • Cretekos C, Wang Y, Green E, Martin J, Rasweller J, Behringer R (2008a) Regulatory divergence modifies limb length between mammals. Genes Dev 22(2):141–151

    PubMed  CAS  Google Scholar 

  • Cretekos CJ, Wang Y, Green ED, Program NCS, Martin JF, Rasweiler JJ, Behringer RR (2008b) Regulatory divergence modifies limb length between mammals. Genes Dev 22(2):141–151. doi:10.1101/gad.1620408

    PubMed  CAS  Google Scholar 

  • Crossley PH, Minowada G, MacArthur CA, Martin GR (1996) Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84(1):127–136

    PubMed  CAS  Google Scholar 

  • Dahn R, Fallon J (2000) Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289:438–441

    PubMed  CAS  Google Scholar 

  • Davis CA, Holymard DP, Millen KJ, Joyner AL (1991) Examining pattern formation in the mouse, chicken and frog embryos with an En-specific antiserum. Development 111:287–298

    PubMed  CAS  Google Scholar 

  • Davis MC, Dahn RD, Shubin NH (2007) An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 447(7143):473–476, http://www.nature.com/nature/journal/v447/n7143/suppinfo/nature05838_S1.html

    PubMed  CAS  Google Scholar 

  • de Crombrugghe B, Akiyama H (2009) Transcriptional control of chondrocyte differentiation. In: Pourquie O (ed) The skeletal system. Cold Spring Harbor Laboratory Press, New York, NY, pp 147–170

    Google Scholar 

  • Dealy CN, Roth A, Brown AM, Kosher RA (1993) Wnt-5a and Wnt-7a are expressed in the developing chick limb bud in a manner suggesting roles in pattern formation along the proximodistal and dorsoventral axes. Mech Dev 43:175–186

    PubMed  CAS  Google Scholar 

  • Duboc V, Logan MPO (2011) Regulation of limb bud initiation and limb-type morphology. Dev Dyn 240(5):1017–1027. doi:10.1002/dvdy.22582

    PubMed  CAS  Google Scholar 

  • Dumont ER (2010) Bone density and the lightweight skeletons of birds. Proceedings of the Royal Society B: Biological Sciences 277(1691):2193–2198

    PubMed  Google Scholar 

  • Eiting T, Gunnell G (2009) Global completeness of the bat fossil record. Journal of Mammalian Evolution 16(3):151–173. doi:10.1007/s10914-009-9118-x

    Google Scholar 

  • Farnum CE, Tinsley M, Hermanson JW (2008) Forelimb versus hindlimb skeletal development in the big brown bat, Eptesicus fuscus functional divergence is reflected in chondrocytic performance in autopodial growth plates. Cells Tissues Organs 187(1):35–47

    PubMed  Google Scholar 

  • Fernandez-Teran M, Ros MA (2008) The apical extodermal ridge: morphological aspects and signaling pathways. Int J Dev Biol 52:857–871

    PubMed  Google Scholar 

  • Fröbisch NB, Shubin NH (2011) Salamander limb development: integrating genes, morphology, and fossils. Dev Dyn 240(5):1087–1099. doi:10.1002/dvdy.22629

    PubMed  Google Scholar 

  • Ganan Y, Macias D, Duterque-Coquillaud M, Ros MA, Hurle JM (1996) Role of TGF(beta)s and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development 122:2349–2357

    PubMed  CAS  Google Scholar 

  • Gilbert SF (2006) Developmental biology, 8th edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Guimond J-C, Levesque M, Michaud P-L, Berdugo J, Finnson K, Philip A, Roy S (2010) BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs. BMC Dev Biol 10(1):15

    PubMed  Google Scholar 

  • Gunnell G, Simmons N (2005a) Fossil evidence and the origin of bats. Journal of Mammalian Evolution 12(1):209–246. doi:10.1007/s10914-005-6945-2

    Google Scholar 

  • Gunnell GF, Simmons NB (2005b) Fossil evidence and the origin of bats. J Mamm Evol 12:209–246

    Google Scholar 

  • Harfe BD (2011) Keeping up with the zone of polarizing activity: new roles for an old signaling center. Dev Dyn 240(5):915–919. doi:10.1002/dvdy.22597

    PubMed  CAS  Google Scholar 

  • Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118(4):517–528

    PubMed  CAS  Google Scholar 

  • Hedenstrom A, Johansson LC, Wolf M, von Busse R, Winter Y, Spedding GR (2007) Bat flight generates complex aerodynamic tracks. Science 316(5826):894–897. doi:10.1126/science.1142281

    PubMed  CAS  Google Scholar 

  • Hockman D, Cretekos CJ, Mason MK, Behringer RR, Jacobs DS, Illing N (2008) A second wave of Sonic hedgehog expression during the development of the bat limb. Proc Natl Acad Sci 105(44):16982–16987. doi:10.1073/pnas.0805308105

    PubMed  CAS  Google Scholar 

  • Hodgkinson VS, Ericsson R, Johanson Z, Joss JMP (2009) The apical ectodermal ridge in the pectoral fin of the Australian lungfish (Neoceratodus forsteri): Keeping the fin to limb transition in the fold. Acta Zoologica 90(s1):253–263

    Google Scholar 

  • Holbrook KA, Odland GF (1978) A collagen and elastic network in the wing of the bat. J Anat 126(1):21–36

    PubMed  CAS  Google Scholar 

  • Hopyan S, Sharpe J, Yang Y (2011) Budding behaviors: Growth of the limb as a model of morphogenesis. Dev Dyn 240(5):1054–1062. doi:10.1002/dvdy.22601

    PubMed  Google Scholar 

  • Jepsen GL (1966) Early Eocene bat from Wyoming. Science 154:1333–1339

    PubMed  CAS  Google Scholar 

  • Kirkpatrick SJ (1994) Scale effects on the stresses and safety factors in the wing bones of birds and bats. J Exp Biol 190(1):195–215

    PubMed  CAS  Google Scholar 

  • Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    PubMed  CAS  Google Scholar 

  • Kronenberg HM, McMahon AP, Tabin CJ (2009) Growth factors and chondrogenesis. In: Pourquie O (ed) The skeletal system. Cold Spring Harbor Laboratory Press, New York, NY, pp 171–203

    Google Scholar 

  • Kunz TH, Anthony ELP (1982) Age estimation and post-natal growth in the bat Myotis lucifugus. J Mammal 63(1):23–32

    Google Scholar 

  • Larsson HCE, Heppleston AC, Elsey RM (2010) Pentadactyl ground state of the manus of Alligator mississippiensis and insights into the evolution of digital reduction in Archosauria. J Exp Zool B Mol Dev Evol 314B(7):571–579. doi:10.1002/jez.b.21362

    Google Scholar 

  • Laufer E, Nelson C, Johnson R, Morgan B, Tabin C (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79:993–1003

    PubMed  CAS  Google Scholar 

  • Laufer E, Pizette S, Zou H, Orozco O, Niswander L (1997) BMP expression in duck interdigital webbing: a reanalysis. Science 278:305

    PubMed  CAS  Google Scholar 

  • Martin GR (1998) The roles of FGFs in the early development of vertebrate limbs. Genes Dev 12:1571–1586

    PubMed  CAS  Google Scholar 

  • Merino R, Rodriguez-Leon J, Macias D, Ganan Y, Economides AN, Hurle JM (1999) The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126(23):5515–5522

    PubMed  CAS  Google Scholar 

  • Minina E, Wenzel H, Kreschel C, Karp S, Gaffield W, McMahon A, Vortkamp A (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128:4523–4534

    PubMed  CAS  Google Scholar 

  • Montavon T, J-Fo LG, Kerszberg M, Duboule D (2008) Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes Dev 22(3):346–359. doi:10.1101/gad.1631708

    PubMed  CAS  Google Scholar 

  • Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenstrom A (2008) Leading-edge vortex improves lift in slow-flying bats. Science 319(5867):1250–1253. doi:10.1126/science.1153019

    PubMed  CAS  Google Scholar 

  • Niswander L, Martin G (1993) FGF-4 and BMP-2 have opposite effects on limb growth. Nature 361:68–71

    PubMed  CAS  Google Scholar 

  • Nolte MJ, Hockman D, Cretekos CJ, Behringer RR, Rasweiler JJ (2009) Embryonic staging system for the black mastiff bat, Molossus rufus (Molossidae), correlated with structure-function relationships in the adult. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 292(2):155–168. doi:10.1002/ar.20835

    Google Scholar 

  • Norberg UM (1972) Functional osteology and myology of the wing of the dog-faced bat Rousettus aegyptiacus (É. Geoffroy) (Mammalia, Chiroptera). Zoomorphology 73(1):1–44. doi:10.1007/bf00418146

    Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans R Soc B 316:335–427

    Google Scholar 

  • Pajni-Underwood S, Wilson C, Elder C, Mishina Y, Lewandoski M (2007) BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development 134:2359–2368

    PubMed  CAS  Google Scholar 

  • Papadimitriou HM, Swartz SM, Kunz TH (1996) Ontogenetic and anatomic variation in mineralization of the wing skeleton of the Mexican free-tailed bat, Tadarida brasiliensis. J Zool 240(3):411–426. doi:10.1111/j.1469-7998.1996.tb05295.x

    Google Scholar 

  • Pivkin IV, Hueso E, Weinstein R, Laidlaw DH, Swartz S, Karniadakis GE (2005) Simulation and visualization of air flow around bat wings during flight. Proceedings of International Conference on Computational Science 351:689–694

    Google Scholar 

  • Pizette S, Niswander L (2000) BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol 219:237–249

    PubMed  CAS  Google Scholar 

  • Ray R, Capecchi M (2008) An examination of the Chiropteran HoxD locus from an evolutionary perspective. Evol Dev 10(6):657–670. doi:10.1111/j.1525-142X.2008.00279.x

    PubMed  CAS  Google Scholar 

  • Reno PL, McCollum MA, Cohn MJ, Meindl RS, Hamrick M, Lovejoy CO (2008) Patterns of correlation and covariation of anthropoid distal forelimb segments correspond to Hoxd expression territories. J Exp Zool B Mol Dev Evol 310B(3):240–258. doi:10.1002/jez.b.21207

    Google Scholar 

  • Richardson MK (1999) Vertebrate evolution: the developmental origins of adult variation. Bioessays 21:604–613

    PubMed  CAS  Google Scholar 

  • Rosello-Diez A, Ros MA, Torres M (2011) Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision. Science 332(6033):1086–1088. doi:10.1126/science.1199489

    PubMed  CAS  Google Scholar 

  • Saunders JJW (1998a) The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. 1948. J Exp Zool 282(6):628–668

    PubMed  Google Scholar 

  • Saunders JW (1998b) Apical ectodermal ridge in retrospect. J Exp Zool 282(6):669–676

    PubMed  Google Scholar 

  • Sears KE (2004) Constraints on the morphological evolution of marsupial shoulder girdles. Evolution 58(10):2353–2370

    PubMed  Google Scholar 

  • Sears KE (2005) Role of development in the evolution of the scapula of the giant sthenurine kangaroos (Macropodidae: Sthenurinae). J Morphol 265(2):226–236

    PubMed  Google Scholar 

  • Sears KE (2008) Molecular determinants of bat wing development. Cells Tissues Organs 187:6–12

    PubMed  CAS  Google Scholar 

  • Sears KE, Behringer RR, Rasweiler JJ, Niswander LA (2006) Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc Natl Acad Sci USA 103(17):6581–6586

    PubMed  CAS  Google Scholar 

  • Shapiro MD (2002) Developmental morphology of limb reduction in Hemiergis (Squamata; Scincidae): chondrogenesis, osteogenesis, and heterochrony. J Morphol 254:211–231

    PubMed  Google Scholar 

  • Shapiro MD, Hanken J, Rosenthal N (2003) Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. J Exp Zool 297B:48–56

    Google Scholar 

  • Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jonsson B, Schluter D, Kingsley DM (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428(April)

    Google Scholar 

  • Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a reaction–diffusion mechanism. Science 314(5804):1447–1450. doi:10.1126/science.1130088

    PubMed  CAS  Google Scholar 

  • Sterbing-D'Angelo S, Chadha M, Chiu C, Falk B, Xian W, Barcelo J, Zook JM, Moss CF (2011) Bat wing sensors support flight control. Proc Natl Acad Sci USA 108(27):11291–11296. doi:10.1073/pnas.1018740108

    PubMed  Google Scholar 

  • Stopper GF, Wagner GP (2005) Of chicken wings and frog legs: a smorgasbord of evolutionary variation in mechanisms of tetrapod limb development. Dev Biol 288:21–39

    PubMed  CAS  Google Scholar 

  • Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418:501–508

    PubMed  CAS  Google Scholar 

  • Swartz SM (1997) Allometric patterning in the limb skeleton of bats: implications for the mechanics and energetics of powered flight. J Morphol 234(3):277–294

    Google Scholar 

  • Swartz SM, Middleton KM (2008) Biomechanics of the bat limb skeleton: scaling, material properties and mechanics. Cells Tissues Organs 187(1):59–84

    PubMed  Google Scholar 

  • Swartz SM, Bennett MB, Carrier DR (1992) Wing bone stresses in free flying bats and the evolution of skeletal design for flight. Nature 359(6397):726–729

    PubMed  CAS  Google Scholar 

  • Swartz SM, Groves MS, Kim HD, Walsh WR (1996) Mechancial properties of bat wing membrane skin. J Zool 239(2):357–378. doi:10.1111/j.1469-7998.1996.tb05455.x

    Google Scholar 

  • Tamura K, Nomura N, Seki R, Yonei-Tamura S, Yokoyama H (2011) Embryological evidence identifies wing digits in birds as digits 1, 2, and 3. Science 331(6018):753–757. doi:10.1126/science.1198229

    PubMed  CAS  Google Scholar 

  • Teeling EC (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188–192

    PubMed  CAS  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307(5709):580–584. doi:10.1126/science.1105113

    PubMed  CAS  Google Scholar 

  • Thewissen JGM, Babcock SK (1992) The origin of flight in bats. Bioscience 42(5):340–345

    Google Scholar 

  • Thewissen JGM, Cohn MJ, Stevens LS, Bajpai S, Heyning J, Horton WE (2006) Developmental basis for hind-limb loss in dolphins and origin of the cetacean bodyplan. Proc Natl Acad Sci USA 103(22):8414–8418

    PubMed  CAS  Google Scholar 

  • Watts P, Mitchell EJ, Swartz SM (2001) A computational model for estimating the mechanics of horizontal flapping flight in bats. J Exp Biol 204(16):2873–2898

    PubMed  CAS  Google Scholar 

  • Weatherbee SD, Behringer RR, Rasweiler JJ, Niswander LA (2006) Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci USA 103(41):15103–15107

    PubMed  CAS  Google Scholar 

  • Wellik D, Sun X, Boekhoff-Falk G (2011) John F. Fallon, PhD: fifty years of excellence in limb research and counting. Dev Dyn 240(5):909–914. doi:10.1002/dvdy.22594

    PubMed  Google Scholar 

  • Welten M, Pavlovska G, Chen Y, Teruoka Y, Fisher M, Bangs F, Towers M, Tickle C (2011) 3D expression patterns of cell cycle genes in the developing chick wing and comparison with expression patterns of genes implicated in digit specification. Dev Dyn 240(5):1278–1288. doi:10.1002/dvdy.22633

    PubMed  CAS  Google Scholar 

  • Wyant KA, Adams RA (2007) Prenatal growth and development in the Angolan free-tailed bat, Mops condylurus (Chiroptera: Molossidae). J Mammal 88(5):1248–1251

    Google Scholar 

  • Yokouchi Y, Sakiyama J, Kameda T, Iba H, Suzuki A, Ueno N, Kuroiwa A (1996) BMP-2/-4 mediate programmed cell death in chicken limb buds. Development 122:3725–3734

    PubMed  CAS  Google Scholar 

  • Zakany J, Kmita M, Duboule D (2004) A dual role for Hox genes in limb anterior-posterior asymmetry. Science 304(5677):1669–1672. doi:10.1126/science.1096049

    PubMed  CAS  Google Scholar 

  • Zhu J, Mackem S (2011) Analysis of mutants with altered Shh activity and posterior digit loss supports a biphasic model for shh function as a morphogen and mitogen. Dev Dyn 240(5):1303–1310. doi:10.1002/dvdy.22637

    PubMed  CAS  Google Scholar 

  • Zou H, Niswander L (1996) Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272:738–741

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Rick Adams and Scott Pedersen for the invitation to contribute to this edited volume. Drs. Chris Cretekos, Richard Behringer, John J. Rasweiler IV, and Mr. Simeone Williams are thanked for conversations and continued field efforts in collecting Carollia specimens. Laura Catherwood and Alex Rockwell are thanked for assistance in sectioning and staining bat wings. Lastly, the authors thank the Department of Life Sciences at the University of West Indies, as well as the Ministry of Agriculture, Land, and Marine Resources of Trinidad and Tobago, Trinidad for supporting our field work. L.N. Cooper thanks the American Association of Anatomists for supporting this research via an AAA Postdoctoral Fellowship. K. Sears thanks the University of Illinois for funding field collection of Carollia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Noelle Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cooper, L.N., Sears, K.E. (2013). How to Grow a Bat Wing. In: Adams, R., Pedersen, S. (eds) Bat Evolution, Ecology, and Conservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7397-8_1

Download citation

Publish with us

Policies and ethics