Skip to main content

Metal Oxide-Based Nanostructures

  • Chapter
  • First Online:

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

At present the use of metal oxide 1D nanomaterials such as nanobelts, nanowires, nanospheres, etc., is the most accepted approach in gas sensor design. Most designers believe that the use of single-crystal or polycrystalline nanowires (NWs) as gas sensors has potential advantages compared to conventional thick-film and thin-film devices because of the intrinsic properties of NWs, such as well-defined geometry, single-crystallinity, and high surface-to-volume ratio. It is expected that this approach can also provide opportunity for considerable improvement of gas sensors stability. Present chapter analyzes these possibilities and describes disadvantages which can limit application of 1D nanostructures in gas sensors. The role of 1-D structures in understanding of gas sensing effect is analyzed as well. Chapter includes 19 figures, 4 Tables and 135 references.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn M-W, Park K-S, Heo J-H, Park J-G, Kim D-W, Choi KJ, Lee J-H, Hong S-H (2008) Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl Phys Lett 93:263103

    Google Scholar 

  • Ahn M-W, Park K-S, Heo J-H, Kim D-W, Choi KJ, Park J-G (2009) On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens Actuators B Chem 138:168–173

    CAS  Google Scholar 

  • Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340

    CAS  Google Scholar 

  • Baik JM, Kim MH, Larson C, Yavuz CT, Stucky GD, Wodtke AM, Moskovits M (2009) Pd-sensitized single vanadium oxide nanowires: highly responsive hydrogen sensing based on the metal-insulator transition. Nano Lett 9:3980–3984

    CAS  Google Scholar 

  • Banerjee D, Lao JY, Wang DZ, Huang JY, Steeves D, Kimball B, Ren ZF (2004) Synthesis and photoluminescence studies on ZnO nanowires. Nanotechnology 15:404–409

    CAS  Google Scholar 

  • Barth S, Hernandez-Ramirez F, Holmes JD, Romano-Rodriguez A (2010) Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci 55:563–627

    CAS  Google Scholar 

  • Batzill M, Katsiev K, Burst JM, Diebold U, Chaka AM, Delley B (2005) Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: structure, composition, and electronic properties. Phys Rev B 72:165414

    Google Scholar 

  • Caruso F, Trau D, Möhwald H, Renneberg R (2000) Enzyme encapsulation in Layer-by-Layer engineered multilayer capsules; Langmuir 16(4):1485–1488

    Google Scholar 

  • Choi K-J, Jang HW (2010) One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10:4083–4099

    CAS  Google Scholar 

  • Choi Y-J, Hwang I-S, Park J-G, Choi KJ, Park J-H, Lee J-H (2008) Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19:095508

    Google Scholar 

  • Choi K, Kim HR, Lee JH (2009) Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres. Sens Actuators B Chem 138:497–503

    CAS  Google Scholar 

  • Colombo P, Vakifahmetoglu C, Costacurta S (2010) Fabrication of ceramic components with hierarchical porosity. J Mater Sci 45:5425–5455

    CAS  Google Scholar 

  • Comini E, Faglia G, Sberveglieri G (2009) Electrical-based gas sensing. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing. Springer, New York, pp 47–107

    Google Scholar 

  • Dai ZR, Pan ZW, Wang ZL (2001) Ultra-long single crystalline nanoribbons of tin oxide. Solid State Comm 118:351–354

    CAS  Google Scholar 

  • Dai ZR, Gole JL, Stout JD, Wang ZL (2002) Tin oxide nanowires, nanoribbons, and nanotubes. J Phys Chem B 106:1274–1279

    CAS  Google Scholar 

  • Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13(1):9–24

    Google Scholar 

  • Deb B, Desai S, Sumanasekera GU, Sunkara MK (2007) Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films. Nanotechnology 18:285501

    Google Scholar 

  • Devi GS, Hyodo T, Shimizu Y, Egashira M (2002) Synthesis of mesoporous TiO2-based powders and their gas-sensing properties. Sens Actuators B Chem 87:122–129

    CAS  Google Scholar 

  • Dmitriev S, Lilach Y, Button B, Moskovits M, Kolmakov A (2007) Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires. Nanotechnology 18:055707

    Google Scholar 

  • Du N, Zhang H, Chen B, Ma X, Liu Z, Wu J, Yang D (2007) Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv Mater 19:1641–1645

    CAS  Google Scholar 

  • Fan HJ, Fuhrmann B, Scholz R, Himcinschi C, Berger A, Leipner H, Dadgar A, Krost A, Christiansen S, Gosele U, Zacharias M (2006) Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping. Nanotechnology 17:S231–S8239

    CAS  Google Scholar 

  • Fan HJ, Gosele Y, Zacharias M (2007) Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3:1660–1671

    CAS  Google Scholar 

  • Feng P, Xue YX, Liu YG, Wan Q, Wang TH (2006) Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination. Appl Phys Lett 89:112114

    Google Scholar 

  • Fields LL, Zheng JP, Cheng Y, Xiong P (2006) Room temperature low-power hydrogen sensor based on a single tin dioxide nanobelt. Appl Phys Lett 88:263102

    Google Scholar 

  • Go J, Sysoev VV, Kolmakov A, Pimparkar N, Alam MA (2009) A novel model for (percolating) nanonet chemical sensors for microarray-based E-nose applications. In: Proceedings of IEEE international electron devices meeting, Baltimore, MD, 7–9 December. Abstract 26.6(1–4) (doi: 10.1109/IEDM.2009.5424266)

  • Golovanov V, Pekna T, Kiv A, Litovchenko V, Korotcenkov G, Brinzari V, Cornet A, Morante J (2005) The influence of structural factors on sensitivity of SnO2-based gas sensors to CO in humid atmosphere. Ukr Phys J 50(4):374–380

    Google Scholar 

  • Guha P, Chakrabarti S, Chaudhuri S (2004) Synthesis of β-Ga2O3 nanowire from elemental Ga metal and its photoluminescence study. Physica E 23:81–85

    CAS  Google Scholar 

  • Gurlo A (2011) Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3:154–165

    CAS  Google Scholar 

  • Han X-G, He H-Z, Kuang Q, Zhou X, Zhang X-H, Xu T, Xie Z-X, Zheng L-S (2009) Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J Phys Chem C 113:584–589

    CAS  Google Scholar 

  • Hayashi M, Hyodo T, Shimizu Y, Egashira M (2009) Effects of microstructure of mesoporous SnO2 powders on their H2 sensing properties. Sens Actuators B Chem 141:465–470

    CAS  Google Scholar 

  • He L, Jia Y, Meng F, Li M, Liu J (2009) Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing. J Mater Sci 44:4326–4333

    CAS  Google Scholar 

  • Hernandez-Ramirez F, Tarancon A, Casals O, Rodrıguez J, Romano-Rodriguez A, Morante JR, Barth S, Mathur S, Choi TY, Poulikakos D, Callegari V, Nellen PM (2006) Fabrication and electrical characterization of circuits based on individual tin oxide nanowires. Nanotechnology 17:5577–5583

    CAS  Google Scholar 

  • Hernandez-Ramirez F, Prades JD, Tarancon A, Barth S, Casals O, Jimenez-Diaz R, Pellicer E, Rodrıguez J, Juli MA, Romano-Rodriguez A, Morante JR, Mathur S, Helwig A, Spannhake J, Mueller G (2007a) Portable microsensors based on individual SnO2 nanowires. Nanotechnology 18:495501

    CAS  Google Scholar 

  • Hernandez-Ramirez F, Tarancon A, Casals O, Arbiol J, Romano-Rodriguez A, Morante JR (2007b) High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens Actuators B Chem 121:3–17

    CAS  Google Scholar 

  • Hernandez-Ramirez F, Prades JD, Jimenez-Diaz R, Fischer T, Romano-Rodriguez A, Mathur S, Morante JR (2009) On the role of individual metal oxide nanowires in the scaling down of chemical sensors. Phys Chem Chem Phys 11:7105–7110

    CAS  Google Scholar 

  • Hieda K, Hyodo T, Shimizu Y, Egashira M (2008) Preparation of porous tin dioxide powder by ultrasonic spray pyrolysis and their application to sensor materials. Sens Actuators B Chem 133:144–150

    CAS  Google Scholar 

  • Hsu CL, Lin YR, Chang SJ, Lu TH, Lin TS, Tsai SY, Chen IC (2006) Influence of the formation of the second phase in ZnO/Ga nanowire systems. J Electrochem Soc 153:G333–G336

    CAS  Google Scholar 

  • Hu JQ, Ma XL, Shang NG, Xie ZY, Wong NB, Lee CS, Lee ST (2002) Large-scale rapid oxidation synthesis of SnO2 nanoribbons. J Phys Chem B 106:3823–3826

    CAS  Google Scholar 

  • Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sens Actuators B Chem 122:659–671

    CAS  Google Scholar 

  • Huang L, Pu L, Shi Y, Zhang R, Gu B, Du Y, Wright S (2005) Controlled growth of well-faceted zigzag tin oxide mesostructures. Appl Phys Lett 87:163124

    Google Scholar 

  • Hyodo T, Shimizu Y (2011) Microstructural design of gas-sensing materials by utilizing various templates. In: Proceedings of 4th GOSPEL workshop: gas sensors based on semiconducting metal oxides: basic understanding and applications, 6–7 June 2011, Tübingen

    Google Scholar 

  • Hyodo T, Nishida N, Shimizu Y, Egashira M (2002) Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sens Actuators B Chem 83:209–215

    CAS  Google Scholar 

  • Hyodo T, Shimizu Y, Egashira M (2003) Gas-sensing properties of ordered mesoporous SnO2 and effects of coating thereof. Sens Actuators B Chem 93:590–600

    CAS  Google Scholar 

  • Hyodo T, Inoue H, Motomura H, Matsuo K, Hashishin T, Tamaki J, Shimizu Y, Egashira M (2010) NO2 sensing properties of macroporous In2O3-based powders fabricated by utilizing ultrasonic spray pyrolysis employing polymethylmethacrylate microspheres as a template. Sens Actuators B Chem 151:265–273

    CAS  Google Scholar 

  • Iskandar F (2009) Nanoparticle processing for optical applications—a review. Adv Powder Tech 20:283–292

    CAS  Google Scholar 

  • Jeun J-H, Hong S-H (2010) CuO-loaded nano-porous SnO2 films fabricated by anodic oxidation and RIE process and their gas sensing properties. Sens Actuators B Chem 151:1–7

    CAS  Google Scholar 

  • Jung SW, Park WI, Yi GC, Kim M (2003) Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures. Adv Mater 15(15):1358–1361

    CAS  Google Scholar 

  • Kam KC, Deepak FL, Cheetham AK, Rao CNR (2004) In2O3 nanowires, nanobouquets and nanotrees. Chem Phys Lett 397:329–334

    CAS  Google Scholar 

  • Kolmakov A (2008) Some recent trends in fabrication, functionalisation and characterization of metal oxide nanowire gas sensors. Int J Nanotechnol 5:450–474

    CAS  Google Scholar 

  • Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal oxide nanostructures. Annu Rev Mater Res 34:151–180

    CAS  Google Scholar 

  • Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673

    CAS  Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    CAS  Google Scholar 

  • Kong XH, Sun XM, Li YD (2003) Synthesis of ZnO nanobelts by carbothermal reduction and their photoluminescence properties. Chem Lett 32:546–547

    CAS  Google Scholar 

  • Konga YY, Wang ZL (2003) Structures of indium oxide nanobelts. Solid State Comm 128:1–4

    Google Scholar 

  • Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39

    Google Scholar 

  • Korotcenkov G, Cornet A, Rossinyol E, Arbiol J, Brinzari V, Blinov Y (2005) Faceting characterization of SnO2 nanocrystals deposited by spray pyrolysis from SnCl4-5H2O water solution. Thin Solid Films 471(1–2):310–319

    CAS  Google Scholar 

  • Kuang Q, Lao CS, Li Z, Liu YZ, Xie ZX, Zheng LS, Wang ZL (2008) Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J Phys Chem C 112:11539–11544

    CAS  Google Scholar 

  • Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S (2007) One dimensional nanostructured materials. Progr Mater Sci 52:699–913

    CAS  Google Scholar 

  • Kumar V, Sen S, Muthe KP, Gaur NK, Gupta SK, Yakhmi JV (2009) Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sens Actuators B Chem 138:587–590

    CAS  Google Scholar 

  • Law M, Kind H, Messer B, Kim F, Yang PD (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed 41:2405–2408

    CAS  Google Scholar 

  • Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122

    CAS  Google Scholar 

  • Lee JH (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B Chem 140:319–336

    CAS  Google Scholar 

  • Lee JS, Park K, Nahm S, Kim SW, Kima S (2002) Ga2O3 nanomaterials synthesized from ball-milled GaN powders. Crystal Growth 244:287–295

    CAS  Google Scholar 

  • Li JY, Qiao ZY, Chen XL, Chen L, Cao YG, He M, Li H, Cao ZM, Zhang Z (2000) Synthesis of β-Ga2O3 nanorods. J Alloys Compounds 306:300–302

    CAS  Google Scholar 

  • Li ZJ, Li HJ, Chen XL, Li L, Xu YP, Li KZ (2002) β-Ga2O3 nanowires on unpatterned and patterned MgO single crystal substrates. J Alloys Comp 345:275–279

    CAS  Google Scholar 

  • Li C, Zhang D, Han S, Liu TT, Zhou C (2003a) Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv Mater 15:143–146

    CAS  Google Scholar 

  • Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C (2003b) In2O3 nanowires as chemical sensors. Appl Phys Lett 82:1613–1615

    CAS  Google Scholar 

  • Li C, Zhang D, Lei B, Han S, Liu X, Zhou C (2003c) Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors. J Phys Chem B 107:12451–12455

    CAS  Google Scholar 

  • Li Y, Yu X, Yang Q (2009) Fabrication of TiO2 nanotube thin films and their gas sensing properties. J. Sensors 2009:402174(1–19)

    Google Scholar 

  • Liang C, Meng G, Lei Y, Phillip F, Zhang L (2001) Catalytic growth of semiconducting In2O3 nanofibers. Adv Mater 13:1330–1333

    CAS  Google Scholar 

  • Liao L, Lu HB, Li JC, Liu C, Fu DJ, Liu YL (2007) The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation. Appl Phys Lett 91:173110

    Google Scholar 

  • Liao L, Mai HX, Yuan Q, Lu HB, Li JC, Liu C, Yan CH, Shen ZX, Yu T (2008) Single CeO2 nanowire gas sensor supported with Pt nanocrystals: gas sensitivity, surface bond states, and chemical mechanism. J Phys Chem C 112:9061–9065

    CAS  Google Scholar 

  • Lieber CM (2003) Nanoscale science and technology: building a big future from small things. MRS Bull 28:486–491

    CAS  Google Scholar 

  • Lilach Y, Zhang JP, Moskovits M, Kolmakov A (2005) Encoding morphology in oxide nanostructures during their growth. Nano Lett 5:2019–2022

    CAS  Google Scholar 

  • Lin Y-F, Jian W-B (2008) The impact of nanocontact on nanowire based nanoelectronics. Nano Lett 8:3146–3150

    CAS  Google Scholar 

  • Lin Z, Song W, Yang H (2012) Highly sensitive gas sensor based on coral-like SnO2 prepared with hydrothermal treatment. Sens Actuators B Chem Chem 173:22–27

    CAS  Google Scholar 

  • Liu Y, Liu M (2005) Growth of aligned square-shaped SnO2 tube arrays. Adv Mater 15(1):57–62

    Google Scholar 

  • Liu B, Zeng HC (2004) Fabrication of ZnO “dandelions” via a modified Kirkendall process. J Am Ceram Soc 126:16744–16746

    CAS  Google Scholar 

  • Liu Y, Zheng C, Wang W, Zhan Y, Wang G (2001) Production of SnO2 nanorods by redox reaction. Crystal Growth 233:8–12

    CAS  Google Scholar 

  • Liu Q, Zhang W-M, Cui Z-M, Zhang B, Wan L-J, Song W-G (2007) Aqueous route for mesoporous metal oxides using inorganic metal source and their applications. Micropor Mesopor Mater 100:233–240

    CAS  Google Scholar 

  • Liu X, Long Y-Z, Liao L, Duan X, Fan Z (2012) Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6(3):1888–1900

    CAS  Google Scholar 

  • Ma XL, Li Y, Zhu YL (2003) Growth mode of the SnO2 nanobelts synthesized by rapid oxidation. Chem Phys Let 376:794–798

    CAS  Google Scholar 

  • Mathur S, Ganesan R, Grobelsek I, Shen H, Ruegamer T, Barth S (2007) Plasma-assisted modulation of morphology and composition in tin oxide nanostructures for sensing applications. Adv Eng Mater 9:658–663

    CAS  Google Scholar 

  • Meier DC, Semancik S, Button B, Strelcov E, Kolmakov A (2007a) Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl Phys Lett 91:063118

    Google Scholar 

  • Meier DC, Evju JK, Boger Z, Raman B, Benkstein KD, Martinez CJ, Montgomery CB, Semancik S (2007b) The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sens Actuators B Chem 121:282–294

    CAS  Google Scholar 

  • Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634

    CAS  Google Scholar 

  • Morio M, Hyodo T, Shimizu Y, Egashira M (2009) Effect of macrostructural control of an auxiliary layer on the CO2 sensing properties of NASICON-based gas sensors. Sens Actuators B Chem 139:563–569

    CAS  Google Scholar 

  • Nam CY, Tham D, Fischer JE (2005) Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires. Nano Lett 5:2029–2033

    CAS  Google Scholar 

  • Okuyama K, Abdullan M, Llenggoro IW, Iskandar F (2006) Preparation of functional nanostructured particles by spray drying. Adv Powder Technol 17:587–611

    CAS  Google Scholar 

  • Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949

    CAS  Google Scholar 

  • Prades JD, Jimenez-Diaz R, Hernandez-Ramırez F, Barth S, Cirera A, Romano-Rodrıguez A, Mathur S, Morante JR (2008) Ultralow power consumption gas sensors based on self-heated individual nanowires. Appl Phys Lett 93:123110

    Google Scholar 

  • Prades JD, Jimenez-Diaz R, Manzanares M, Hernandez-Ramirez F, Cirera A, Romano-Rodriguez A, Mathur S, Morante JR (2009a) A model for the response towards oxidizing gases of photoactivated sensors based on individual SnO2 nanowires. Phys Chem Chem Phys 11:10881–10889

    CAS  Google Scholar 

  • Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F, Barth S, Cirera A, Romano-Rodriguez A, Mathur S, Morante JR (2009b) Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sens Actuators B Chem 140:337–342

    CAS  Google Scholar 

  • Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351

    CAS  Google Scholar 

  • Qian LH, Wang K, Li Y, Fang HT, Lu QH, Ma XL (2006) CO sensor based on Au-decorated SnO2 nanobelt. Mater Chem Phys 10:82–84

    Google Scholar 

  • Rani S, Roy SC, Paulose M, Varghese OK, Mor GK, Kim S, Yoriya S, LaTempa TJ, Grimes CA (2010) Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys Chem Chem Phys 12:2780–2800

    CAS  Google Scholar 

  • Rossinyol E, Prim A, Pellicer E, Rodriguez J, Peirу F, Cornet A, Morante JR, Tian B, Bo T, Zhao D (2007a) Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection. Sens Actuators B Chem 126:18–23

    CAS  Google Scholar 

  • Rossinyol E, Prim A, Pellicer E, Arbiol J, Hernandez-Ramirez F, Peirу F, Cornet A, Morante JR, Solovyov LA, Tian B, Bo T, Zhao D (2007b) Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications. Adv Funct Mater 17:1801–1806

    CAS  Google Scholar 

  • Rothschild A, Tuller HL (2006) Gas sensors: new materials and processing approaches. J Electroceram 17:1005–1012

    CAS  Google Scholar 

  • Rout CS, Kulkarni GU, Rao CNR (2007) Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides. J Phys D 40:2777–2782

    CAS  Google Scholar 

  • Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20:682–737

    CAS  Google Scholar 

  • Shimizu Y, Hyodo T, Egashira M (2004) Mesoporous semiconducting oxides for gas sensor application. J Eur Ceram Soc 24:1389–1398

    CAS  Google Scholar 

  • Shimizu Y, Jono A, Hyodo T, Egashira M (2005) Preparation of large mesoporous SnO2 powders for gas sensor application. Sens Actuators B Chem 108:56–61

    CAS  Google Scholar 

  • Soldano C, Comini E, Baratto C, Ferroni M, Faglia G, Sberveglieri G (2012) Metal oxides mono-dimensional nanostructures for gas sensing and light emission. J Am Ceram Soc 95(3):831–850

    CAS  Google Scholar 

  • Strelcov E, Dmitriev S, Button B, Cothren J, Sysoev V, Kolmakov A (2008) Evidence of the self-heating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors. Nanotechnology 19:355502

    Google Scholar 

  • Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W, Hahn H, Strelcov E, Kolmakov A (2009) Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films. Sens Actuators B Chem 139:699–703

    CAS  Google Scholar 

  • Tiemann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13:8376–8388

    CAS  Google Scholar 

  • Tresback JS, Padture NP (2008) Low-temperature gas sensing in individual metal-oxide-metal heterojunction nanowires. J Mater Res 23:2047–2052

    CAS  Google Scholar 

  • Varghese OK, Grimes CA (2003) Metal oxide nanoarchitectures for environmental sensing. J Nanosci Nanotechnol 3:277–293

    CAS  Google Scholar 

  • Varghese OK, Gong D, Paulose M, Grimes CA, Dickey EC (2003a) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18(1):156–165

    CAS  Google Scholar 

  • Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003b) Hydrogen sensing using titania nanotubes. Sens Actuators B Chem 93:338–344

    CAS  Google Scholar 

  • Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat Nanotechnol 4:592–597

    CAS  Google Scholar 

  • Vuong NM, Jung H, Kim D, Kim H, Hong S-K (2012) Realization of an open space ensemble for nanowires: a strategy for the maximum response in resistive sensors. J Mater Chem 22:6716–6725

    Google Scholar 

  • Wadea TL, Wegrowe J-E (2005) Template synthesis of nanomaterials. Eur Phys J Appl Phys 29:3–22

    Google Scholar 

  • Wagner T, Waitz T, Roggenbuck J, Froeba M, Kohl C-D, Tiemann M (2007) Ordered mesoporous ZnO for gas sensing. Thin Solid Films 515:8360–8363

    CAS  Google Scholar 

  • Wallentina J, Borgstrom MT (2011) Doping of semiconductor nanowires. J Mater Res 26:2142–2156

    Google Scholar 

  • Wan G, Wang TH (2005) Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem Commun 30:3841–3843

    Google Scholar 

  • Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12:1295–1298

    CAS  Google Scholar 

  • Wang W, Xu C, Wang X, Liu Y, Zhan Y, Zheng C, Song F, Wang G (2002) Preparation of SnO2 nanorods by annealing SnO2 powder in NaCl flux. J Mater Chem 12:1922–1925

    CAS  Google Scholar 

  • Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20:848–858

    CAS  Google Scholar 

  • Wei TY, Yeh PH, Lu SY, Wang ZL (2009) Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J Am Chem Soc 131:17690–17695

    CAS  Google Scholar 

  • Whang D, Jin S, Wu Y, Lieber CM (2003) Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett 3:1255–1259

    CAS  Google Scholar 

  • Xia YN, Yang PD, Sun YG, Wu YY, Mayers B (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    CAS  Google Scholar 

  • Xu C, Xu G, Liu Y, Zhao X, Guanghou WG (2002) Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor. Scri Mater 46:789–794

    CAS  Google Scholar 

  • Yang HX, Qian JF, Chen ZX, Ai XP, Cao YL (2007) Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment. J Phys Chem 111:14067–14071

    CAS  Google Scholar 

  • Yuan L, Hyodo T, Shimizu Y, Egashira M (2011) Preparation of mesoporous and/or macroporous SnO2-based powders and their gas-sensing properties as thick film sensors. Sensors 11(2):1261–1276

    CAS  Google Scholar 

  • Yue W, Zhou W (2008) Crystalline mesoporous metal oxide. Progr Nat Sci 18:1329–1338

    CAS  Google Scholar 

  • Zeng ZM, Wang K, Zhang ZX, Chen JJ, Zhou WL (2009) The detection of H2S at room by using individual indium oxide nanowire transistors. Nanotechnology 20:045503

    Google Scholar 

  • Zhang D, Li C, Liu X, Han S, Tang T, Zhou C (2003) Doping dependent NH3 sensing of indium oxide nanowires. Appl Phys Lett 83:1845–1847

    CAS  Google Scholar 

  • Zhang Y, Ago H, Liu J, Yumura M, Uchida K, Ohshima S, Iijima S, Zhu J, Zhang X (2004a) The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled. J Cryst Growth 264:363–368

    CAS  Google Scholar 

  • Zhang DH, Liu ZQ, Li C, Tang T, Liu XL, Han S, Lei B, Zhou CW (2004b) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 4:1919–1924

    CAS  Google Scholar 

  • Zhang Y, Kolmakov A, Libach Y, Moskovits M (2005) Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. J Phys Chem B 109:1923–1929

    CAS  Google Scholar 

  • Zhang X, Chen H, Zhang HY (2007) Layer-by-layer assembly: from conventional to unconventional methods. Chem Commun 2007:1395–1405

    Google Scholar 

  • Zhao Q, Gao Y, Bai X, Wu C, Xie Y (2006) Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts. Eur J Inorg Chem 2006(8):1643–1648

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Metal Oxide-Based Nanostructures. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_3

Download citation

Publish with us

Policies and ethics