Instability of Metal Oxide Parameters and Approaches to Their Stabilization

  • Ghenadii Korotcenkov
Part of the Integrated Analytical Systems book series (ANASYS)


Metal oxides are the most stable materials used for gas sensor design. However, the problem of parameters’ instability still remains for metal oxides. Present chapter analyzes in detail this problem. In particular, in this chapter one can find a description of processes responsible for changes in sensor parameters as well as approaches used for improvement of the sensor parameters stability. Chapter includes 30 figures, 3 Tables and 175 references.


Sensor Parameter SnO2 Film Flame Spray Pyrolysis SnO2 Powder Gallium Indium Zinc Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamyan AZ, Adamyan ZN, Aroutiounian VM (2003) Preparation of SnO2 films with thermally stable nanoparticles. Sensors 3:438–442Google Scholar
  2. Adamyan AZ, Adamian ZN, Aroutiounian VM, Schierbaum KD, Han S-D (2009) Improvement and stabilization of thin-film hydrogen sensors parameters. Armenian J Phys 2(3):200–212Google Scholar
  3. Akedo J, Lebedev M (1999) Microstructure and electrical properties of lead zirconate titanate (Pb(Zr0.52Ti0.48)O3) thick film deposited with aerosol deposition method. Jpn J Appl Phys 38:5397–5401Google Scholar
  4. Andersen SK, Johannessen T, Mosleh M, Wedel S, Tranto J, Livbjerg H (2002) The formation of porous membranes by filtration of aerosol nanoparticles. J Nanopart Res 4:405–416Google Scholar
  5. Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew Chem Int Ed 34:2014–2017Google Scholar
  6. Anukunprasert T, Saiwan C, Traversa E (2005) The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb–TiO2. Sci Tech Adv Mater 6:359–363Google Scholar
  7. Arroyo R, Cordoba G, Padilla J, Lara VH (2002) Influence of manganese ions on the anatase–rutile phase transition of TiO2 prepared by the sol–gel process. Mater Lett 54:397–402Google Scholar
  8. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407:2093–2101Google Scholar
  9. Bagheri-Mohagheghi M-M, Shahtahmasebi N, Alinejad MR, Youssefi A, Shokooh-Saremi M (2008) The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing–complexing sol–gel method. Phys B Condens Matter 403:2431–2437Google Scholar
  10. Baik NS, Sakai G, Miura N, Yamazoe N (2000a) Preparation of stabilized nanosized tin oxide particles by hydrothermal treatment. J Am Ceram Soc 83(12):2983–2987Google Scholar
  11. Baik NS, Sakai G, Miura N, Yamazoe N (2000b) Hydrothermally treated sol solution of tin oxide for thin-film gas sensor. Sens Actuators B Chem 63:74–79Google Scholar
  12. Baik NS, Sakai G, Shimanoe K, Miura N, Yamazoe N (2000c) Hydrothermal treatment of tin oxide sol solution for preparation of thin-film sensor with enhanced thermal stability and gas sensitivity. Sens Actuators B Chem 65:97–100Google Scholar
  13. Barborini E, Bongiorno G, Forleo A, Francioso L, Milani P, Kholmanov LN, Piseri P, Siciliano P, Taurino AM, Vinati S (2005) Thermal annealing effect on nanostructured TiO2 microsensors by supersonic cluster beam deposition. Sens Actuators B Chem 111–112:22–27Google Scholar
  14. Barnard AS, Curtiss LA (2005) Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett 5:1261–1266Google Scholar
  15. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167Google Scholar
  16. Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors. A status report. Fresenius J Anal Chem 365:287–304Google Scholar
  17. Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61Google Scholar
  18. Brinker CJ, Hurd AJ, Schunk P-R, Ashley CS (1992) Review of sol–gel thin film formation. J Non-Cryst Solids 147–148:424–436Google Scholar
  19. Brinzari V, Korotcenkov G, Schwank J, Lantto V, Saukko S, Golovanov V (2002) Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution. Thin Solid Films 408(1–2):51–58Google Scholar
  20. Brynzari V, Korotchenkov G, Dmitriev S (2000) Theoretical study of semiconductor thin film gas sensitivity: attempt to consistent approach. J Electron Technol 33:225–235Google Scholar
  21. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Ch Mater 53:117–166Google Scholar
  22. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology. Noyes, Park Ridge, NJGoogle Scholar
  23. Callone E, Carturan G, Sicurelli A (2006) Nanopowders of metallic oxides by the hydrolytic route with starch stabilization and biological abetment. J Nanosci Nanotechnol 6(1):254–257Google Scholar
  24. Callone E, Carturan G, Ischia M, Sicurelli A (2007) Size stabilization of nanoparticles by polysaccharides: effectiveness in the wet and curing steps. J Mater Res 22(12):3344–3354Google Scholar
  25. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce DS, Taurino AM (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5:1335–1348Google Scholar
  26. Ciobanu C, Liu Y, Wang Y, Patton BR (1999) Numerical calculation of electrical conductivity of porous electroceramics. J Electroceram 3(1):17–23Google Scholar
  27. Cirera A, Dieguez A, Diaz R, Cornet A, Morante JR (1999) New method to obtain stable small-sized SnO2 powders for gas sensors. Sens Actuators B Chem 58:360–364Google Scholar
  28. Cirera A, Cornet A, Morante JR, Olaizola SM, Castano E, Gracia J (2000) Comparative structural study between sputtered and liquid pyrolysis nanocrystalline SnO2. Mater Sci Eng B 69–70:406–410Google Scholar
  29. Dai ZR, Gole JL, Stout JD, Wang ZL (2002) Tin oxide nanowires, nanoribbons, and nanotubes. J Phys Chem B 106:1274–1279Google Scholar
  30. De Angelis L, Riva R (1995) Selectivity and stability of a tin dioxide sensor for methane. Sens Actuators B Chem 28:25–29Google Scholar
  31. De Souza Brito GE, Santilli CV, Pulcinelli SH (1995) Evolution of the fractal structure during sintering of SnO2 compacted sol–gel powder. Colloid Surf A 97:217–225Google Scholar
  32. Dieguez A, Romano-Rodriguez A, Morante JR, Barsan N, Weimar U, Gopel W (1997) Nondestructive assessment of the grain size distribution of SnO2 nanoparticles by low-frequency Raman spectroscopy. Appl Phys Lett 71(14):1957–1959Google Scholar
  33. Dieguez A, Romano-Rodriguez A, Morante JR, Kappler J, Barsan N, Gopel W (1999) Nanoparticle engineering for gas sensor optimisation: improved sol–gel fabricated nanocrystalline SnO2 thick film gas sensor for NO2 detection by calcination, catalytic metal introduction and grinding treatments. Sens Actuators B Chem 60:125–137Google Scholar
  34. Dufoura L-C, Bertrand GL, Caboche G, Decorse P, El Anssari A, Poirson A, Vareille M (1997) Fundamental and technological aspects of the surface properties reactivity of some metal oxides. Solid State Ion 101–103:661–666Google Scholar
  35. Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693Google Scholar
  36. Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation—measurement, modelling and simulation. Butterworth–Heinemann, Oxford, EnglandGoogle Scholar
  37. Fang LM, Zu XT, Li ZJ, Zhu S, Liu CM, Zhou WL, Wang LM (2008) Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol–gel-calcination or sol–gel-hydrothermal route. J Alloys Compd 454:261–267Google Scholar
  38. Fleischer M, Hanrieder W, Meixner H (1990) Stability of semiconducting gallium oxide thin films. Thin Solid Films 190:93–102Google Scholar
  39. Fleischer M, Hollbauer L, Meixner H (1994) Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases. Sens Actuators B Chem 18–19:119–124Google Scholar
  40. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1):36–50Google Scholar
  41. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticle. Environ Sci Technol 43:1354–1359Google Scholar
  42. Fujihara S, Maeda T, Ohgi H, Hosono E, Imai H, Kim S-H (2004) Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability. Langmuir 20:6476–6481Google Scholar
  43. Fukui K, Katsuki A (2000) Improvement of humidity dependence in gas sensor based on SnO2. Sens Actuators B Chem 65:316–318Google Scholar
  44. Gentry SJ, Walsh PT (1987) The theory of poisoning of catalytic flammable gas sensing elements. In: Moseley PT, Tofield BC (eds) Solid state gas sensors. Adam Hilger, Bristol, Philadelphia, pp 32–50Google Scholar
  45. Golovanov V, Pekna T, Kiv A, Litovchenko V, Korotcenkov G, Brinzari V, Cornet A, Morante J (2005) The influence of structural factors on sensitivity of SnO2-based gas sensors to CO in humid atmosphere. Ukr Phys J 50(4):374–380Google Scholar
  46. Gribb AA, Banfield JF (1997) Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am Mineral 82:717–728Google Scholar
  47. Gryaznov VG, Trusov LI (1993) Size effects in micromechanics of nanocrystals. Prog Mater Sci 37:289–401Google Scholar
  48. Gurlo A (2011) Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3:154–165Google Scholar
  49. Han X-G, He H-Z, Kuang Q, Zhou X, Zhang X-H, Xu T, Xie Z-X, Zheng L-S (2009a) Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J Phys Chem C 113:584–589Google Scholar
  50. Han X, Jin M, Xie S, Kuang Q, Jiang Z, Jiang Y, Xie Z, Zheng L (2009b) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew Chem Int Ed 48:9180–9183Google Scholar
  51. Haugen J-E, Tomic O, Kvaal K (2000) A calibration method for handling the temporal drift of solid state gas-sensors. Anal Chim Acta 407:23–39Google Scholar
  52. Hayashia M, Hyodo T, Shimizu Y, Egashira M (2009) Effects of microstructure of mesoporous SnO2 powders on their H2 sensing properties. Sens Actuators B Chem 141:465–470Google Scholar
  53. Heavens N (1990) Electrophoretic deposition as a processing route for ceramics. In: Binner GP (ed) Advanced ceramic processing and technology, vol 1. Noyes, Park Ridge, NJ, pp 255–283Google Scholar
  54. Hillhouse HW (2005) Synthesis of ordered mesoporous tin oxide thin films displaying extremely high thermal stability: a TEM and SAXS study of structural changes during the thermal treatment. In: AIChE annual meeting conference proceedings, vol 2005, p 1Google Scholar
  55. Holody PRJ, Soltis RE, Hangas J (2001) Limiting particle growth in platinum/tin oxide nanocomposites. Scripta Mater 44:1821–1824Google Scholar
  56. Horvath G, Gerblinger J, Meixner H, Giber J (1996) Segregation driving forces in perovskite titanates. Sens Actuators B Chem 32:93–99Google Scholar
  57. Hu Y, Tan OK, Pan JS, Huang H, Cao W (2005) The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sens Actuators B Chem 108:244–249Google Scholar
  58. Huang JF, Xia CK, Xiong XB, Cao LY, Wu JP (2007) Preparation of SnO2 nanocrystallites by hydrothermal liquid–solid-solution process. Mater Res Innov 11(3):118–121Google Scholar
  59. Hunter RJ (1987) Foundation of colloidal science, vol 1. Oxford University Press, New York, NYGoogle Scholar
  60. Hyodo T, Nishida N, Shimizu Y, Egashira M (2002) Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sens Actuators B Chem 83:209–215Google Scholar
  61. Ihokura K, Watson J (1994) The stannic oxide gas sensor—principles and applications. CRC Press, Boca Raton, FLGoogle Scholar
  62. Itoh T, Matsubara I, Shin W, Izu N, Nishibori M (2008) Analytical study of resistance drift phenomena on (PANI)xMoO3 hybrid thin films as gas sensors. Bull Chem Soc Jpn 81(10):1331–1335Google Scholar
  63. Jamnik J, Kamp B, Merkle R, Maier J (2002) Space charge influenced oxygen incorporation in oxides: in how far does it contribute to the drift of Taguchi sensors? Solid State Ion 150:157–166Google Scholar
  64. Joshi RK, Kruis FE, Dmitrieva O (2006) Gas sensing behavior of SnO1.8:Ag films composed of size-selected nanoparticles. J Nanopart Res 8:797–808Google Scholar
  65. Jung J-S, Son K-S, Kim T-S, Ryu M-K, Park K-B, Yoo B-W, Kwon J-Y, Lee S-Y, Kim J-M (2008) Stability improvement of gallium indium zinc oxide thin film transistors by post-thermal annealing. ECS Trans 16(9):309–313Google Scholar
  66. Kappler J, Bârsan N, Weimar U, Dièguez A, Alay JL, Romano-Rodriguez A, Morante JR, Göpel W (1998) Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresenius J Anal Chem 361:110–114Google Scholar
  67. Kappler J, Tomescu A, Barsan N, Weimar U (2001) CO consumption of Pd doped SnO2 based sensors. Thin Solid Films 391(2):186–191Google Scholar
  68. Karunagarani B, Rajendra Kumar RT, Mangalaraj D, Narayandass SAK, Mohan RG (2002) Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films. Cryst Res Technol 37(12):1285–1292Google Scholar
  69. Kennedy MK, Kruis FE, Fissan H, Nienhaus H, Lorke A, Metzger TH (2005) Effect of in-flight annealing and deposition method on gas-sensitive SnOX films made from size-selected nanoparticles. Sens Actuators B Chem 108:62–69Google Scholar
  70. Khanna A, Kumar R, Bhatti SS (2003) CuO-doped SnO2 thin films as hydrogen sulfide gas sensor. Appl Phys Lett 82(24):4388–4390Google Scholar
  71. Kim H, Kim J, Yang H, Suh J, Kim T, Han B, Kim S, Kim DS, Pikhitsa PV, Choi M (2006) Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nat Nanotechnol 1:117–121Google Scholar
  72. Kocemba I, Rynkowski J (2011) The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sens Actuators B Chem 155:659–666Google Scholar
  73. Korosi L, Dekany I (2006) Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloid Surf A 280:146–154Google Scholar
  74. Korosi L, Papp S, Meynen V, Cool P, Vansant EF, Dekany I (2005) Preparation and characterization of SnO2 nanoparticles of enhanced thermal stability: the effect of phosphoric acid treatment on SnO2·nH2O. Colloid Surf A 268:147–154Google Scholar
  75. Korosi L, Papp S, Bertуti I, Dekany I (2007a) Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chem Mater 19:4811–4819Google Scholar
  76. Korosi L, Oszko A, Galbacs G, Richardt A, Zollmer V, Dekany I (2007b) Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films. Appl Catal B 77:175–183Google Scholar
  77. Korosi L, Papp S, Beke S, Oszko A, Dekany I (2010) Effects of phosphate modification on the structure and surface properties of ordered mesoporous SnO2. Micropor Mesopor Mater 134:79–86Google Scholar
  78. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxides: state of the art and approaches. Sens Actuators B Chem 107:209–232Google Scholar
  79. Korotcenkov G (2007a) Metal oxides for solid state gas sensors. What determines our choice? Mater Sci Eng B 139:1–23Google Scholar
  80. Korotcenkov G (2007b) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B Chem 121:664–678Google Scholar
  81. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39Google Scholar
  82. Korotcenkov G, Cho BK (2011) Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens Actuators B Chem 156:527–538Google Scholar
  83. Korotcenkov G, Han SD (2009) (Cu, Fe, Co and Ni)-doped SnO2 films deposited by spray pyrolysis: doping influence on thermal stability of SnO2 film structure. Mater Chem Phys 113:756–763Google Scholar
  84. Korotcenkov G, Boris I, Brinzari V, Luchkovsky Y, Karkotsky G, Golovanov V, Cornet A, Rossinyol E, Rodriguez J, Cirera A (2004) Gas sensing characteristics of one-electrode gas sensors on the base of doped In2O3 ceramics. Sens Actuators B Chem 103:13–22Google Scholar
  85. Korotcenkov G, Brinzari V, Ivanov M, Cerneavschi A, Rodriguez J, Cirera A, Cornet A, Morante J (2005a) Structural stability of In2O3 films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479:38–51Google Scholar
  86. Korotcenkov G, Cornet A, Rossinyol E, Arbiol J, Brinzari V, Blinov Y (2005b) Faceting characterization of SnO2 nanocrystals deposited by spray pyrolysis from SnCl4-5H2O water solution. Thin Solid Films 471(1–2):310–319Google Scholar
  87. Korotcenkov G, Boris I, Cornet A, Rodriguez J, Cirera A, Golovanov V, Lychkovsky Y, Karkotsky G (2007) Influence of additives on gas sensing and structural properties of In2O3-based ceramics. Sens Actuators B Chem 120:657–664Google Scholar
  88. Korotcenkov G, Brinzari V, Boris I (2008) (Cu, Fe, Co or Ni)-doped SnO2 films deposited by spray pyrolysis: doping influence on film morphology. J Mater Sci 43(8):2761–2770Google Scholar
  89. Korotcenkov G, Han SD, Cho BK, Brinzari V (2009) Grain size effects in sensor response of nanostructured SnO2- and In2O3-based conductometric gas sensor. Crit Rev Solid State Mater Sci 34:1–17Google Scholar
  90. Kung HH, Kung MC, Costello CK (2003) Supported Au catalysts for low temperature CO oxidation. J Catal 216:425–432Google Scholar
  91. Laconte J, Flandre D, Raskin JP (eds) (2005) Micromachined thin-film sensors for SOI-CMOS co-integration. Springer, BerlinGoogle Scholar
  92. Lee G-G, Kang S-JL, Kwon J, Kim DS (2010) Effect of a sintering process on the electrical properties of SnO2 gas sensors. J Nanosci Nanotechnol 10(1):68–73Google Scholar
  93. Li D, Kaner RB (2006) Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc 128:968–975Google Scholar
  94. Li M, Li JC (2006) Size effects on the band-gap of semiconductor compounds. Mater Lett 60:2526–2529Google Scholar
  95. Lifshits IM, Slezov VV (1959) Kinetics of diffusive decomposition of supersaturated solid solutions. J Exp Theor Phys 8:331–339Google Scholar
  96. Lifshits IM, Slezov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50Google Scholar
  97. Liu F, Quan B, Chen L, Yu L, Liu Z (2004) Investigation on SnO2 nanopowders stored for different time and BaTiO3 modification. Mater Chem Phys 87:297–300Google Scholar
  98. Liu F, Quan B, Liu Z, Chen L (2005a) Surface characterization study on SnO2 powder modified by thiourea. Mater Chem Phys 93:301–304Google Scholar
  99. Liu Y, Koep E, Liu M (2005b) A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem Mater 17:3997–4000Google Scholar
  100. Liu Z, Yamazaki T, Shen Y, Kikuta T, Nakatani N (2007) Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films. Sens Actuators B Chem 128:173–178Google Scholar
  101. Lu H, Yang X, Wu C, Li J, Qiu N (2006) Micro-type powder-sputtered thin film gas sensors with long-term stability. In: Proceedings of the 2006 IEEE international conference on mechatronics and automation, Luoyang, China, 25–28 June, pp 2111–2115Google Scholar
  102. Madler L, Kammler HK, Mueller R, Pratsinis SE (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 33(2):369–389Google Scholar
  103. Madler L, Stark WJ, Pratsinis SE (2003) Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2. J Mater Res 18(1):115–120Google Scholar
  104. Madler L, Sahm T, Gurlo A, Grunwaldt J-D, Barsan N, Weimar U, Pratsinis SE (2006a) Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J Nanopart Res 8:783–796Google Scholar
  105. Madler L, Roessler A, Pratsinis SE, Sahm T, Gurlo A, Barsan N, Weimar U (2006b) Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens Actuators B Chem 114:283–295Google Scholar
  106. Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices. Academic Press, San Diego, CA, LondonGoogle Scholar
  107. Mandayo GG, Castano E, Gracia FJ, Cirera A, Cornet A, Morante JR (2003) Strategies to enhance the carbon monoxide sensitivity of tin oxide thin films. Sens Actuators B Chem 95:90–96Google Scholar
  108. Massok P, Loesch M, Bertrand D (1995) Comparison for the between two Figaro sensors (TGS 813 and TGS 842) for the detection of methane, in terms of selectivity and long-term stability. Sens Actuators B Chem 24–25:525–528Google Scholar
  109. Matsuura Y, Takahata K (1991) Stabilization of SnO2 sintered gas sensors. Sens Actuators B Chem 5:205–209Google Scholar
  110. Meixner H, Lampe U (1996) Metal oxide sensors. Sens Actuators B Chem 33:198–202Google Scholar
  111. Min B-K, Choi S-D (2004) SnO2 thin film gas sensor fabricated by ion beam deposition. Sens Actuators B Chem 98:239–246Google Scholar
  112. Molina R, Al-Salama Y, Jurkschat K, Dobson PJ, Thompson IP (2011) Potential environmental influence of amino acids on the behavior of ZnO nanoparticles. Chemosphere 83:545–551Google Scholar
  113. Nakamura Y (1989) Stability of the sensitivity of SnO2-based elements in the field. In: Seiyama T (ed) Chemical sensor technology, vol 2. Elsevier, Amsterdam, pp 71–82Google Scholar
  114. Navrotsky A (2001) Thermochemistry of nanomaterials. In: Banfield JF, Navrotsky A (eds) Reviews in mineralogy and geochemistry: nanoparticles and the environment, vol 44. Mineralog Soc Am, pp 77–103Google Scholar
  115. Neiman AY (1996) Cooperative transport in oxides: diffusion and migration processes involving Mo(VI), W(VI), V(V) and Nb(V). Solid State Ion 83:263–273Google Scholar
  116. Nishibori M, Shin W, Tajima K, Houlet LF, Izu N, Itoh T, Matsubara I (2008) Long-term stability of Pt/alumina catalyst combustors for micro-gas sensor application. J Eur Ceram Soc 28:2183–2190Google Scholar
  117. Nowotny J (1988) Surface segregation of defects in oxide ceramic materials. Solid State Ion 28–30:1235–1243Google Scholar
  118. Oudet F, Vejux A, Courtine P (1989) Evolution during thermal treatment of pure and lanthanum-doped Pt/Al2O3 and Pt-Rh/Al2O3 automotive exhaust catalysts: transmission electron microscopy studies on model samples. Appl Catal 50:79–86Google Scholar
  119. Ozaki Y, Suzuki S, Morimitsu M, Matsunaga M (2000) Enhanced long-term stability of SnO2-based CO gas sensors modified by sulfuric acid treatment. Sens Actuators B Chem 62:220–225Google Scholar
  120. Panchapakesan B, DeVoe DL, Widmaier MR, Cavicchi R, Steve SS (2001) Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications. Nanotechnology 12:336–349Google Scholar
  121. Papadopoulos CA, Vlachos DS, Avaritsiotis JN (1997) Effect of surface catalysts on the long-term performance of reactively sputtered tin and indium oxide gas sensors. Sens Actuators B Chem 42:95–101Google Scholar
  122. Park CO, Akbar SA (2003) Ceramics for chemical sensing. J Mater Sci 38:4611–4637Google Scholar
  123. Pavelko RG, Vasiliev AA, Llobet E, Vilanova X, Barrabes N, Medina F, Sevastyanov VG (2009) Comparative study of nanocrystalline SnO2 materials for gas sensor application: thermal stability and catalytic activity. Sens Actuators B Chem 137:637–643Google Scholar
  124. Petot-Ervas G, Petot C (1990) Surface segregation in ceramic materials during cooling or under a temperature gradient. J Eur Ceram Soc 6:323–330Google Scholar
  125. Pijolat C, Pupier C, Sauvan M, Tournier G, Lalauze R (1999) Gas detection for automotive pollution control. Sens Actuators B Chem 59:195–202Google Scholar
  126. Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219Google Scholar
  127. Qi L, Ma J, Cheng H, Zhao Z (1998) Synthesis and characterization of mesostructured tin oxide with crystalline walls. Langmuir 14:2579–2581Google Scholar
  128. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8:28–35Google Scholar
  129. Robertson WM (1960) Surface diffusion of oxides. J Nucl Mater 30:30–49Google Scholar
  130. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592Google Scholar
  131. Romain A-C, Nicolas J (2010) Long term stability of metal oxide-based gas sensors for E-nose environmental applications: an overview. Sens Actuators B Chem 146:502–506Google Scholar
  132. Rong YH (2005) Phase transformations and phase stability in nanocrystalline materials. Curr Opin Solid State Mater Sci 9:287–295Google Scholar
  133. Sahm T, Madler L, Gurlo A, Barsan N, Pratsinis SE, Weimar U (2004) Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sens Actuators B Chem 98:148–153Google Scholar
  134. Sahner K, Tuller HL (2010) Novel deposition techniques for metal oxides: prospects for gas sensing. J Electroceram 24:1385–3449Google Scholar
  135. Sahner K, Kaspar M, Moos R (2009) Assessment of the aerosol deposition method for preparing metal oxide gas sensors at room temperature. Sens Actuators B Chem 139:394–399Google Scholar
  136. Samsonov GV (1973) The oxide handbook. IFI/Plenum, New York, NYGoogle Scholar
  137. Santos LRB, Chartier T, Pagnoux C, Baumard JF, Santillii CV, Pulcinelli SH, Larbot A (2004) Tin oxide nanoparticle formation using a surface modifying agent. J Eur Ceram Soc 24:3713–3721Google Scholar
  138. Sayago I, Gutierrez J, Ares L, Robla JI, Horrilo MC, Getino J, Rino J, Agapito JA (1995) Long-term reliability of sensors for detection of nitrogen oxides. Sens Actuators B Chem 26–27:56–58Google Scholar
  139. Sharma RK, Chan PCH, Tang Z, Yan G, Hsing IM, Sin JLO (2001) Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices. Sens Actuators B Chem 81:9–16Google Scholar
  140. Shek CH, Lai JKL, Lin GM (1999) Investigation of interface defects in nanocrystalline SnO2 by positron annihilation. J Phys Chem Solids 60:189–193Google Scholar
  141. Shi M, Xu F, Yu K, Zhu Z, Fang J (2007) Controllable synthesis of In2O3 nanocubes, truncated nanocubes, and symmetric multipods. J Phys Chem C 111:16267–16271Google Scholar
  142. Shimizu Y, Karino S, Takao Y, Hyodo T, Baba K, Egashira M (2000) Improvement of long-term stability of thin film gas sensors by ion beam-assisted deposition. J Electrochem Soc 147(11):4379–4384Google Scholar
  143. Skala T, Veltruska K, Moroseac M, Matolinova I, Korotcenkov G, Matolin V (2003) Study of Pd–In interaction during Pd deposition on pyrolytically prepared In2O3. Appl Surf Sci 205:196–205Google Scholar
  144. Smatko V, Golovanov V, Liu CC, Kiv A, Fuks D, Donchev I, Ivanovskaya M (2009) Structural stability of In2O3 films as sensor materials. J Mater Sci Mater Electron 21(4):360–363Google Scholar
  145. Srivastava DN, Chappel S, Palchik O, Zaban A, Gedanken A (2002) Sonochemical synthesis of mesoporous tin oxide. Langmuir 18:4160–4164Google Scholar
  146. Straumal B, Baretzky B, Mazilkin A, Protasova S, Myatiev A, Straumal P (2009) Increase of Mn solubility with decreasing grain size in ZnO. J Eur Ceram Soc 29:1963–1970Google Scholar
  147. Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17:4743–4756Google Scholar
  148. Strobel R, Stark WJ, Madler L, Pratsinis SE, Baiker A (2003) Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. J Catal 213(2):296–304Google Scholar
  149. Sugiyama M, Okazaki H, Koda S (2002) Size and shape transformation of TiO2 nanoparticles by irradiation of 308-nm laser beam. Jpn J Appl Phys 41:4666–4674Google Scholar
  150. Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W, Hahn H, Strelcov E, Kolmakov A (2009) Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films. Sens Actuators B Chem 139:699–703Google Scholar
  151. Tang Z, Chan PCH, Sharma PK, Yan G, Hsing I-M, Sin JKO (2001) Investigation and control of microcracks in tin oxide gas sensor thin-film. Sens Actuators B Chem 79:39–47Google Scholar
  152. Tiemann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13:8376–8388Google Scholar
  153. Toledo-Antonio JA, Gutierrez-Baez R, Sebastian PJ, Vazquez A (2003) Thermal stability and structural deformation of rutile SnO2 nanoparticles. J Solid State Chem 174:241–248Google Scholar
  154. Tricoli A, Graf M, Pratsinis SE (2008a) Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater 18:1969–1976Google Scholar
  155. Tricoli A, Graf M, Mayer F, Kuhne S, Hierlemann A, Pratsinis SE (2008b) Micropatterning layers by flame aerosol deposition-annealing. Adv Mater 20:3005–3010Google Scholar
  156. Tricoli A, Righettoni M, Teleki A (2010) Semiconductor gas sensors: dry synthesis and application. Angew Chem Int Ed 49:7632–7659Google Scholar
  157. Tso C-P, Zhung C-M, Shih Y-H, Tseng Y-M, Wu S-C, Doong R-A (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61(1):127–133Google Scholar
  158. Ulrich M, Bunde A, Kohl CD (2004) Percolation and gas sensitivity in nanocrystalline metal oxide films. Appl Phys Lett 85:242–244Google Scholar
  159. Veltruska K, Tsud N, Brinzari V, Korotcenkov G, Matolin V (2001) CO adsorption on Pd clusters deposited on pyrolytically prepared SnO2 studied by XPS. J Vacuum 61:129–134Google Scholar
  160. Wagner T, Kohl C-D, Froba M, Tiemann M (2006) Gas sensing properties of ordered mesoporous SnO2. Sensors 6:318–323Google Scholar
  161. Wamkam CT, Opoku MK, Hong H, Smith P (2011) Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles. J Appl Phys 109(2):024305Google Scholar
  162. Wang Y-D, Wu X-H, Zhou Z-L, Li Y-F (2003) The reliability and lifetime distribution of SnO2- and CdSnO3-gas sensors for butane. Sens Actuators B Chem 92:186–190Google Scholar
  163. Wang Y, Ma C, Sun X, Li H (2005) Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route. J Colloid Interface Sci 286:627–631Google Scholar
  164. Wang Q, Varghese O, Grimes CA, Dickey EC (2007) Grain boundary blocking and segregation effects in yttrium-doped polycrystalline titanium dioxide. Solid State Ion 178:187–194Google Scholar
  165. Wang N, Cai Y, Zhang RQ (2008) Growth of nanowires. Mater Sci Eng R 60:1–51Google Scholar
  166. Wu N-L, Wu L-F, Rusakova IA, Hamed A, Litvinchuk AP (1999a) Evolution in structural and optical properties of stannic oxide xerogel upon heat treatment. J Am Ceram Soc 82(1):67–73Google Scholar
  167. Wu N-L, Wang S-Y, Rusakova IA (1999b) Inhibition of crystallite growth in the sol–gel synthesis of nanocrystalline metal oxides. Science 285:1375–1377Google Scholar
  168. Wurzinger O, Reinhardt G (2004) CO-sensing properties of doped SnO2 sensors in H2-rich gases. Sens Actuators B Chem 103:104–110Google Scholar
  169. Wynblatt P, Rohrer GS, Papillon F (2003) Grain boundary segregation in oxide ceramics. J Eur Ceram Soc 23:2841–2848Google Scholar
  170. Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B Chem 3:145–147Google Scholar
  171. Xu C, Wang X, Zhu J (2008) Graphene–metal particle nanocomposites. J Phys Chem C 112:19841–19845Google Scholar
  172. Yan Y, Zhou J, Wu XZ, Moutinho HR, Al-Jassim MM (2007) Structural instability of Sn-doped In2O3 thin films during thermal annealing at low temperature. Thin Solid Films 515:6686–6690Google Scholar
  173. Yang CC, Jiang Q (2006) Size effect on the bandgap of II–VI semiconductor nanocrystals. Mater Sci Eng B 131:191–194Google Scholar
  174. Yang G, Haibo Z, Biying Z (2000) Monolayer dispersion of oxide additives on SnO2 and their promoting effects on thermal stability of SnO2 ultrafine particles. J Mater Sci 35:917–923Google Scholar
  175. Zanella R, Giorgio S, Shin CH, Henry CR, Louis C (2004) Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J Catal 222:357–367Google Scholar
  176. Zarbov M, Schuster I, Gal-Or L (2002) Methodology for selection of charging agents for electrophoretic deposition of ceramic particles. In: Proceedings of the international symposium on electrophoretic deposition: fundamentals and applications, vol 21, The Electrochemical Society Inc, USA, pp 39–46Google Scholar
  177. Zhang G, Liu M (2000) Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens Actuators B Chem 69:144–152Google Scholar
  178. Zhang H, Finnegan M, Banfield JF (2001) Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature. Nano Lett 1:81–85Google Scholar
  179. Zhitomirsky I (2002) Cathodic electrophoretic deposition of ceramic and organoceramic materials—fundamental aspects. Adv Colloid Interface Sci 97:279–317Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ghenadii Korotcenkov
    • 1
  1. 1.Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuKorea, Republic of (South Korea)

Personalised recommendations