Skip to main content

Spatiotemporal Bounded Noises and Their Application to the Ginzburg–Landau Equation

  • Chapter
  • First Online:
Book cover Bounded Noises in Physics, Biology, and Engineering

Abstract

In this work, we introduce three spatiotemporal colored bounded noises, based on the zero-dimensional Cai–Lin, Tsallis–Borland, and sine-Wiener noises. Then we study and characterize the dependence of the defined stochastic processes on both a temporal correlation parameter τ and a spatial coupling parameter λ. In particular, we found that varying λ may induce a transition of the distribution of the noise from bimodality to unimodality. With the aim to investigate the role played by bounded noises on spatially extended nonlinear dynamical systems, we analyze the behavior of the real Ginzburg–Landau time-varying model additively perturbed by such noises. The observed phase transitions phenomenology is quite different from the one observed when the perturbations are unbounded. In particular, we observed inverse “order-to-disorder” transitions, and reentrant transitions, with dependence on the specific type of bounded noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Rev. Mod. Phys. 70, 223 (1998)

    Article  Google Scholar 

  2. Ridolfi, L., D’Odorico, P., Laio, F.: Noise-Induced Phenomena in the Environmental Sciences. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  3. Horsthemke, W., Lefever, R.: Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Springer Series in Synergetics. Springer, New York (1984)

    MATH  Google Scholar 

  4. Wio, H.S., Lindenberg, K.: Modern challenges in statistical mechanics. AIP Conf. Proc. 658, 1 (2003)

    Article  Google Scholar 

  5. Ibañes, R.T.M., García-Ojalvo, J., Sancho, J.M.: Lect. Note Phys. 557/2000, 247 (2000)

    Google Scholar 

  6. García-Ojalvo, J., Sancho, J.M.: Noise in Spatially Extended Systems. Springer, New York (1996)

    Google Scholar 

  7. Sagués, F., Sancho, J., García-Ojalvo, J.: Rev. Modern Phys. 79(3), 829 (2007)

    Article  Google Scholar 

  8. Wang, Q.Y., Lu, Q.S., Chen, G.R.: Phys. A Stat. Mech. Appl. 374(2), 869 (2007)

    Article  Google Scholar 

  9. Wang, Q.Y., Lu, Q.S., Chen, G.R.: Eur. Phys. J. B Condens. Matter Complex Syst. 54(2), 255 (2006)

    Google Scholar 

  10. Wang, Q.Y., Perc, M., Lu, Q.S., Duan, S., Chen, G.R.: Int. J. Modern Phys. B 24, 1201 (2010)

    Article  MATH  Google Scholar 

  11. Sancho, J., García-Ojalvo, J., Guo, H.: Phys. D Nonlinear Phenom. 113(2–4), 331 (1998)

    Article  MATH  Google Scholar 

  12. Jung, P., Hänggi, P.: Phys. Rev. A 35, 4464 (1987)

    Article  Google Scholar 

  13. García-Ojalvo, J., Sancho, J.M., Ramírez-Piscina, L.: Phys. Rev. A 46, 4670 (1992)

    Article  Google Scholar 

  14. Lam, P.M., Bagayoko, D.: Phys. Rev. E 48, 3267 (1993)

    Article  Google Scholar 

  15. García-Ojalvo, J., Sancho, J.M.: Phys. Rev. E 49, 2769 (1994)

    Article  Google Scholar 

  16. Wio, H.S., Toral, R.: Phys. D Nonlinear Phenom. 193(1–4), 161 (2004)

    Article  MATH  Google Scholar 

  17. Cai, G.Q., Lin, Y.K.: Phys. Rev. E 54, 299 (1996)

    Article  Google Scholar 

  18. Bobryk, R.V., Chrzeszczyk, A.: Phys. A Stat. Mech. Appl. 358(2–4), 263 (2005)

    Article  Google Scholar 

  19. de Franciscis, S., d’Onofrio, A.: Phys. Rev. E 86, 021118 (2012)

    Google Scholar 

  20. de Franciscis, S., d’Onofrio, A.: arXiv:1203.5270v2 [cond-mat.stat-mech] (2012)

    Google Scholar 

  21. García-Ojalvo, J., Sancho, J., Ramírez-Piscina, L.: Phys. Lett. A 168(1), 35 (1992)

    Article  Google Scholar 

  22. García-Ojalvo, J., Parrondo, J.M.R., Sancho, J.M., Van den Broeck, C.: Phys. Rev. E 54, 6918 (1996)

    Article  Google Scholar 

  23. Carrillo, O., Ibañes, M., García-Ojalvo, J., Casademunt, J., Sancho, J.M.: Phys. Rev. E 67, 046110 (2003)

    Article  Google Scholar 

  24. Maier, R.S., Stein, D.L.: Proc. SPIE Int. Soc. Opt. Eng. 5114, 67 (2003)

    Article  Google Scholar 

  25. Komin, N., Lacasa, L., Toral, R.: J. Stat. Mech. Theor Exp. P12008 (2010) doi:10.1088/1742-5468/2010/12/P12008

    Google Scholar 

  26. Scarsoglio, S., Laio, F., D’Odorico, P., Ridolfi, L.: Math. Biosci. 229(2), 174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ouchi, K., Tsukamoto, N., Horita, T., Fujisaka, H.: Phys. Rev. E 76, 041129 (2007)

    Article  MathSciNet  Google Scholar 

  28. Borland, L.: Phys. Lett. A 245(1–2), 67 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cai, G., Suzuki, Y.: Nonlinear Dyn. 45, 95 (2006)

    Article  MathSciNet  Google Scholar 

  30. Cai, G., Wu, C.: Probabilist. Eng. Mech. 19(3), 197 (2004)

    Article  Google Scholar 

  31. Coppel, W.: Asymptotic Behavior of Differential Equations. Heath, Boston (1965)

    MATH  Google Scholar 

  32. Komin, N., Lacasa, L., Toral, R.: J. Stat. Mech. Theor Exp. 10, 12008 (2010)

    Article  Google Scholar 

  33. d’Onofrio, A.: Phys. Rev. E 81, 021923 (2010)

    Google Scholar 

Download references

Acknowledgements

This research was performed under the partial support of the Integrated EU project P-medicine—From data sharing and integration via VPH models to personalized medicine (Project No. 270089), which is partially funded by the European Commission under the Seventh Framework program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Franciscis, S., d’Onofrio, A. (2013). Spatiotemporal Bounded Noises and Their Application to the Ginzburg–Landau Equation. In: d'Onofrio, A. (eds) Bounded Noises in Physics, Biology, and Engineering. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7385-5_8

Download citation

Publish with us

Policies and ethics