Skip to main content

Abstract

The study of heart rate variability (HRV) focuses on the analysis of beat-to-beat fluctuations in heart rate and the diagnostic ability that these fluctuations provide. The series of time intervals between heartbeats, referred to as RR intervals, are measured over a period of anywhere from 10 min to 24 h and form the most commonly studied HRV time series (Rompelman et al., Med. Biol. Eng. Comput. 15(3):233–239, 1977). The great majority of variability witnessed in heart rate records is due to the autonomic nervous system modulating heart rate (Jalife and Michaels, Vagal Control of the Heart: Experimental Basis and Clinical Implications, ed. by Levy and Schwartz, Futura, New York, 1994, pp. 173–205). Accordingly, attention has focused on HRV as a method of quantifying cardiac autonomic function. Vagal tone is the dominant influence under resting conditions and the majority of heart rate fluctuations are a result of vagal modulation (Chess et al., Am. J. Physiol. 228:775–780, 1975). This provides clinicians with a reliable, non-invasive technique to monitor parasympathetic nervous activity. This, and other information that can be derived from HRV records, is of great importance to clinicians in the diagnosis, treatment and study of many illnesses related to the cardiovascular and autonomic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Rompelman, A.J.R.M. Coenen, R.I. Kitney, Measurement of heart-rate variability: part 1 - comparative study of heart-rate variability analysis methods. Med. Biol. Eng. Comput. 15(3), 233–239 (1977)

    Article  PubMed  CAS  Google Scholar 

  2. J. Jalife, D.C. Michaels, Neural control of sinoatrial pacemaker activity. In Vagal Control of the Heart: Experimental Basis and Clinical Implications, ed. by M.N. Levy, P.J. Schwartz (Futura, New York, 1994), pp. 173–205

    Google Scholar 

  3. G.F. Chess, R.M.K. Tam, F.R. Calaresu, Influence of cardiac neural inputs on rhythmic variations of heart periods in the cat. Am. J. Physiol. 228, 775–780 (1975)

    PubMed  CAS  Google Scholar 

  4. S. Hales, in Haemastaticks, ed. by S. Hales. Statistical Essays, vol. II (Manby & Woodward, London, 1994)

    Google Scholar 

  5. E.H. Hon, S.T. Lee, Electronic evaluations of the fetal heart rate patterns preceding fetal death, further observations. Am. J. Obstet. Gynec. 87, 814–826 (1965)

    Google Scholar 

  6. D.J. Ewing, C.N. Martin, R.J. Young, B.F. Clarke, The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetic Care 8, 491–498 (1985)

    Article  CAS  Google Scholar 

  7. J. Penaz, J. Roukenz, H.J. Vander Waal, Spectral analysis of some spontaneous rhythms in the circulation. In Biokybernetik, ed. by N. Drischel, H. Tiedt (Karl Marx University, Germany, 1968), pp. 233–241

    Google Scholar 

  8. B.M. Sayers, Analysis of heart rate variability. Ergonomics 16(1), 17–32 (1973)

    Article  PubMed  CAS  Google Scholar 

  9. J.A. Hirsh, B. Bishop, Respiratory sinus arrhythmia in humans; how breathing pattern modulates heart rate. Am. J. Physiol. Heart Circ. Physiol. 241, H620–H629 (1981)

    Google Scholar 

  10. M.M. Wolf, G.A. Varigos, D. Hunt, J.G. Sloman, Sinus arrhythmia in acute myocardial infarction. Med. J. Australia. 2, 52–53 (1978)

    PubMed  CAS  Google Scholar 

  11. S. Akselrod, D. Gordon, J.B. Madved, N.C. Snidman, D.C. Shannon, R.J. Cohen, Hemodynamic regulation: investigation by spectral analysis. Am. J. Physiol. 249, H867–H875 (1985)

    PubMed  CAS  Google Scholar 

  12. M. Pagani, F. Lombardi, S. Guzzetti, O. Rimoldi, R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. Dell’Orto, E. Piccaluga, Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59(2), 178–193 (1986)

    Article  PubMed  CAS  Google Scholar 

  13. B. Pomeranz, R.J. Macaulay, M.A. Caudill, I. Kutz, D. Adam, D. Gordon, K.M. Kilborn, A.C. Barger, D.C. Shannon, R.J. Cohen, H. Benson, Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. 248(1), H151–H153 (1985)

    PubMed  CAS  Google Scholar 

  14. J.L. Bigger, J.T. Fleiss, L.M. Rolnitzky, R.E. Kleiger, J.N. Rottman, Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 85, 164–171 (1992)

    Article  PubMed  Google Scholar 

  15. R.E. Klieger, J.P. Miller, J.T. Bigger, A.J. Moss, the Multicenter Post-Infarction Research Group, Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59, 256–262 (1987)

    Google Scholar 

  16. M. Malik, T. Farrell, T. Cripps, A.J. Camm, Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur. Heart J. 10, 1060–1074 (1989)

    PubMed  CAS  Google Scholar 

  17. M.G. Signorini, R. Sassi, F. Lombardi, S. Cerutti, Regularity patterns in heart rate variability signal: the approximate entropy approach. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Biomedical Engineering Towards the Year 2000 and Beyond, vol. 20, pts 1–6, ed. by H.K. Chang, Y.T. Zhang. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, pp. 306–309, 1998

    Google Scholar 

  18. M.G. Signorini, S. Guzzetti, R. Parola, S. Cerutti, Complex dynamics assessment in 24-hour heart-rate-variability signals in normal and pathological subjects. In Proceedings of Computers in Cardiology, pp. 401–404, 1993, ed. by A. Murray

    Google Scholar 

  19. A. Malliani, P.J. Schwartz, A. Zanchetti, A sympathetic reflex elicited by experimental coronary occlusion. Am. J. Physiol. 217, 703–709 (1969)

    PubMed  CAS  Google Scholar 

  20. B. Lown, R. Verrier, Neural activity and ventricular fibrillation. N. Emgl. J. Med. 294, 1165–1170 (1976)

    Article  CAS  Google Scholar 

  21. P.J. Schwartz, M.T. La Rovere, E. Vanoli, Autonomic nervous system and sudden cardiac death: experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 85, 177–191 (1992)

    Google Scholar 

  22. F. Lombardi, A. Malliani, Power spectral analysis of rr variability. Giornale Italiano di Cardiologia 22, 501–509 (1992)

    PubMed  CAS  Google Scholar 

  23. J. Kautzner, J. Camm. Clinical relevance of heart rate variability. Clin. Cardiol. 20, 162–168 (1997)

    Article  PubMed  CAS  Google Scholar 

  24. D.H. Singer, G.J. Martin, N. Magid, J.S. Weiss, J.W. Schaad, R. Kehoe, T. Zheutlin, D.J. Fintel, A.M. Hsieh, M. Lesch, Low heart rate variability and sudden cardiac death. J. Electrocardiol. 21, S46–S55 (1988)

    Article  PubMed  Google Scholar 

  25. R.E. Bigger, J.T. Kleiger, J.L. Fleiss, L.M. Rolnitzky, J.P. Miller, Components of heart rate variability measured during healing of acute myocardial infarction. Am. J. Cardiol. 61, 208–215 (1988)

    Article  PubMed  Google Scholar 

  26. F. Lombardi, G. Sandrone, S. Pernpruner, R. Sala, M. Garimoldi, S. Cerutti, G. Baselli, M. Pagani, A. Malliani, Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. Am. J. Cardiol. 60, 1239–1245 (1987)

    Article  PubMed  CAS  Google Scholar 

  27. A.M. Pellizzer, P.W. Kamen, G. Jackman, D. Brazzale, H. Krum, Non-invasive assessment of baroreflex sensitivity and relation to measures of heart rate variability in man. Clin. Exp. Pharma. Physiol. 23, 621–624 (1996)

    Article  CAS  Google Scholar 

  28. G. Mancia, A. Ferrari, L. Gregorini, G. Parati, G. Pomidossi, G. Bertinieri, G. Grassi, A. Zanchetti. Blood pressure variability in man: its relation to high blood pressure, age and baroreflex sensitivity. Clin. Sci. 59, 401s–404s (1980)

    PubMed  Google Scholar 

  29. J.P. Toyry, J.V. Partanen, L.K. Niskanen, E.A. Lansimies, M.I. Uusitupa, Divergent development of autonomic and peripheral somatic neuropathies in niddm. Diabetologia 40, 953–958 (1997)

    Article  PubMed  CAS  Google Scholar 

  30. H.H. Osterhues, G. Grossmann, M. Kochs, V. Hombach, Heart-rate variability for discrimination of different types of neuropathy in patients with insulin-dependent diabetes mellitus. J. Endocrinol. Invest. 21, 24–30 (1998)

    PubMed  CAS  Google Scholar 

  31. H.L. Kennedy, Beta blockade, ventricular arrhythmias, and sudden cardiac death. Am. J. Cardiol. 80, 29J–34J (1997)

    Article  PubMed  CAS  Google Scholar 

  32. T.G. Farrell, Y. Bashir, T. Cripps, M. Malik, J. Poloniecki, D.E. Bennett, D.E. Ward, A.J. Camm, Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J. Am. Coll. Cardiol. 18(3), 687–697 (1991)

    Article  PubMed  CAS  Google Scholar 

  33. M. Kupari, J. Virolainen, P. Koskinen, M.J. Tikkanen, Short-term heart rate variability and factors modifying the risk of coronary artery disease in a population sample. Am. J. Cardiol. 72(12), 897–903 (1993)

    Article  PubMed  CAS  Google Scholar 

  34. M.W. Rich, J.S. Saini, R.E. Kleiger, R.M. Carney, A. teVelde, K.E. Freedland, Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am. J. Cardiol. 62(10, Part 1), 714–717, (1988)

    Google Scholar 

  35. M.G. Kienzle, D.W. Ferguson, C.L. Birkett, G.A. Myers, W.J. Berg, D.J. Mariano, Clinical, hemodynamic and sympathetic neural correlates of heart rate variability in congestive heart failure. Am. J. Cardiol. 69(8), 761–767 (1992)

    Article  PubMed  CAS  Google Scholar 

  36. J. Nolan, A.D. Flapan, S. Capewell, T.M. MacDonald, J.M. Neilson, D.J. Ewing, Decreased cardiac parasympathetic activity in chronic heart failure and its relation to left ventricular function. Brit. Heart J. 67(6), 482–485 (1992)

    Article  PubMed  CAS  Google Scholar 

  37. D. Gallagher, T. Terenzi, R. de Meersman, Heart rate variability in smokers, sedentary and aerobically fit individuals. Clin. Auton. Res. 2, 383–387 (1992)

    Article  PubMed  CAS  Google Scholar 

  38. P. Koskinen, J. Virolainen, M. Kupari, Acute alcohol intake decreases short-term heart rate variability in healthy subjects. Clin. Sci. 87(2), 225–230 (1994)

    PubMed  CAS  Google Scholar 

  39. S.C. Malpas, E.A. Whiteside, T.J. Maling, Heart rate variability and cardiac autonomic function in men with chronic alcohol dependence. Brit. Heart J. 65, 84–88 (1991)

    Article  PubMed  CAS  Google Scholar 

  40. F.M. Fouad, R.C. Tarazi, C.M. Ferrario, S. Fighaly, C. Alicandri, Assessment of parasympathetic control of heart rate by non-invasive method. Am. J. Phsiol. 246, H838–H842 (1983)

    Google Scholar 

  41. D.L. Eckberg, Human sinus arrhythmia as an index of vagal cardiac outflow. J. Appl. Physiol. 54, 961–966 (1983)

    PubMed  CAS  Google Scholar 

  42. M. Malik, A.J. Camm, Components of heart rate variability – what they really mean and what we really measure. Am. J. Cardiol. 72, 821–822 (1993)

    Article  PubMed  CAS  Google Scholar 

  43. A. Malliani, Cardiovascular sympathetic afferent fibres. Rev. Physiol. Biochem. Pharmacol. 94, 11–74 (1982)

    Article  Google Scholar 

  44. M.V. Kamath, E.L. Fallen, Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit. Rev. Biomed. Eng. 21(3), 245–311 (1993)

    PubMed  CAS  Google Scholar 

  45. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology, Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    Google Scholar 

  46. M.N. Levy, H. Zieske, Autonomic control of cardiac pacemaker activity and atriventricular transmission. J. Appl. Physiol. 27, 465–470 (1969)

    PubMed  CAS  Google Scholar 

  47. G. Casolo, E. Bali, T. Taddei, J. Amuhasi, C. Gori, Decreased spontaneous heart rate variability in congestive heart failure. Am. J. Cardiol. 64(18), 1162–1167 (1989)

    Article  PubMed  CAS  Google Scholar 

  48. D.Z. Kocovic, T. Harada, J.B. Shea, D. Soroff, P.L. Friedman, Alterations of heart rate and of heart rate variability after radiofrequency catheter ablation of supraventricular tachycardia. delineation of parasympathetic pathways in the human heart. Circulation 88, 1671–1681 (1993)

    Google Scholar 

  49. A. Lagi, C. Tamburini, M. Cipriani, L. Fattorini, Vagal control of heart rate variability in vasovagal syncope: studies based on 24-h electrocardiogram recordings. Clin. Auton. Res. 7, 127–130 (1997)

    Article  PubMed  CAS  Google Scholar 

  50. K. Umetani, D.H. Singer, R. McCraty, M. Atkinson, Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J. Am. Coll. Cardiol. 31, 593–601 (1998)

    Article  PubMed  CAS  Google Scholar 

  51. E. Baykal A. Akinci, A. Celiker T. Tezic, Heart rate variability in diabetic children: sensitivity of the time- and frequency-domain methods. Pediatr. Cardiol. 14, 140–146 (1993)

    Article  PubMed  Google Scholar 

  52. M.P. van den Berg, J. Haaksma, J. Brouwer, R.G. Tieleman, G. Mulder, H.J. Crijns, Heart rate variability in patients with atrial fibrillation is related to vagal tone. Circulation 96, 1209–1216 (1997)

    Article  PubMed  Google Scholar 

  53. M.M. Massin, K. Maeyns, N. Withofs, F. Ravet, P. Gerard, Circadian rhythm of heart rate and heart rate variability. Arch. Dis. Child. 83, 179–182 (2000)

    Article  PubMed  CAS  Google Scholar 

  54. D. Ramaekers, H. Ector, A.E. Aubert, A. Rubens, F. Van de Werf, Heart rate variability and heart rate in healthy volunteers: is the female autonomic nervous system cardioprotective? Euro. Heart J. 19, 1334–1341 (1998)

    Article  CAS  Google Scholar 

  55. M.A. Woo, D.K. Moser, L.W. Stevenson, W.G. Stevenson, Six-minute walk test and heart rate variability: lack of association in advanced stages of heart failure. Am. J. Crit. Care 6(1), 348–354 (1997)

    PubMed  CAS  Google Scholar 

  56. M. Brennan, P. Kamen, M. Palaniswami, A new cardiac nervous system model for heart rate variability analysis. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 349–352, IEEE Press, 2000

    Google Scholar 

  57. P.W. Kamen, H. Krum, A.M. Tonkin. Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin. Sci. 91, 201–208 (1996)

    PubMed  CAS  Google Scholar 

  58. M. Nakao, M. Norimatsu, Y. Mizutani, M. Yamamoto, Spectral distortion properties of the integral pulse frequency modulation model. IEEE Trans. Biomed. Eng. 44(5), 419–426 (1997)

    Article  PubMed  CAS  Google Scholar 

  59. R.D. Berger, S. Askelrod, D. Gordon, R.J. Cohen, An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans. Biomed. Eng. 33, 900–904 (1986)

    Article  PubMed  CAS  Google Scholar 

  60. S. Akselrod, D. Gordon, F.A. Ubel, D.C. Shannon, A.C. Berger, R.J. Cohen, Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504), 220–222 (1981)

    Article  PubMed  CAS  Google Scholar 

  61. N. Montano, T.G. Ruscone, A. Porta, F. Lombardi, M. Pagani, A. Malliani, Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90(4), 1826–1831 (1994)

    Article  PubMed  CAS  Google Scholar 

  62. K.E. Sands, M.L. Appel, L.S. Lilly, F.J. Schoen, G.H. Mudge, R.J. Cohen, Power spectrum analysis of heart rate variability in human cardiac transplant recipients. Circulation 79, 76–82 (1989)

    Article  PubMed  CAS  Google Scholar 

  63. A. Voss, S. Schulz, R. Schroeder, M. Baumert, P. Caminal, Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. Roy. Soc. A 367(1887), 277–296 (2009)

    Article  Google Scholar 

  64. J.J. Goldberger, M.W. Ahmed, M.A. Parker, A.H. Kadish, Dissociation of heart rate variability from parasympathetic tone. Am. J. Physiol. 266, H2152–H2157 (1994)

    PubMed  CAS  Google Scholar 

  65. L. Glass, Chaos and heart rate variability. J. Cardiovasc. Electrophysiol. 10, 1358–1360 (1999)

    Article  PubMed  CAS  Google Scholar 

  66. M. Brennan, M. Palaniswami, P. Kamen, Poincare plot interpretation using a physiological model of hrv based on a network of oscillators. Am. J. Physiol. Heart Circ. Physiol. 283, 1873–1886 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khandoker, A.H., Karmakar, C., Brennan, M., Voss, A., Palaniswami, M. (2013). Introduction. In: Poincaré Plot Methods for Heart Rate Variability Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7375-6_1

Download citation

Publish with us

Policies and ethics