Skip to main content

Quantitative Hybrid Bond Graph-Based Fault Detection and Isolation

  • Chapter
  • First Online:
  • 1205 Accesses

Abstract

To perform model based fault diagnosis, a behavior model using available sensor measurements and system parameters is built to derive Analytical Redundancy Relationships (ARRs) to monitor the system. In this chapter, first, the bond graph based fault diagnosis for continuous system using ARRs is introduced. Several key steps of decision making are discussed. Two existing Bond Graph (BG)-based methods to generate symbolic ARRs, i.e., covering path method and causality inversion method, are introduced. Some useful properties of these two existing methods are presented. These insights lead to an integrated strategy which combines the gists of both symbolic ARR generation methods to derive optimum number of symbolic ARRs in an orderly and efficient fashion from the BG. In this chapter, the ARR method has been extended to the hybrid systems based on a new concept of Global Analytical Redundancy Relations (GARRs) which are unified relations to represent the monitored hybrid systems normal dynamics at all modes. In order to avoid causality reassignment due to changes in operating modes, two causality assignment methods are introduced to derive a HBG with a desirable causality assignment that leads to a unified description of system’s behavior (i.e., GARRs). These results lay a foundation for quantitative fault diagnosis design for complex hybrid systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.C. Karnopp, D. Margolis, R.C. Rosenberg, in System Dynamics: Modeling and Simulation of Mechatronic Systems (Wiley, Hoboken, 2006)

    Google Scholar 

  2. P.J. Mosterman, G. Biswas, Diagnosis of continuous valued systems in transient operating regions. IEEE Trans. Syst. Man Cyber. 29(6), 554–565 (1999)

    Article  Google Scholar 

  3. M. Tagina, J.P. Cassar, G. Dauphin-Tanguy, M. Staroswiecki, Monitoring of systems modelled by bond-graphs, in Internation Conference on BG Modeling (ICBGM’95) (Las Vegas, 1995), pp. 275–279

    Google Scholar 

  4. B.O. Bouamama, A.K. Samantaray, M. Staroswiecki, G. Dauphin-Tanguy, Derivation of constraint relations from BG models for fault detection and isolation, in Internation Conference on BG Modeling (ICBGM’03), (2003), pp. 104–109

    Google Scholar 

  5. A.K. Samantaray, K. Medjaher, B.O. Bouamama, M. Staroswiecki, G. Dauphin-Tanguy, Diagnostic BG for online fault detection and isolation. Simul. Model. Pract. Theor. 14(3), 237–262 (2006)

    Article  Google Scholar 

  6. B.O. Bouamama, K. Medjaher, M. Bayart, A.K. Samantaray, B. Conrard, Fault detection and isolation of smart actuators using BGs and external model. Control Eng. Pract. 13(2), 159–175 (2005)

    Article  Google Scholar 

  7. B.O. Bouamama, K. Medjaher, A.K. Samantaray, M. Staroswiecki, Supervision of an industrial steam generator. Part I: BG Modelling. Control Eng. Pract. 14(1), 71–83 (2006)

    Article  Google Scholar 

  8. K. Medjaher, A.K. Samantaray, B.O. Bouamama, M. Staroswiecki, Supervision of an industrial steam generator. Part II: Online Implementation. Control Eng. Pract. 14(1), 85–96 (2006)

    Article  Google Scholar 

  9. C.H. Low, Y.K. Wong, A.B. Rad, Intelligent system for process supervision and fault diagnosis in dynamic physical systems. IEEE Trans. Ind. Electron. 53(2), 581–592 (2006)

    Article  Google Scholar 

  10. D.A. Linkens, H. Wang, Qualitative BG reasoning in control engineering: fault diagnosis, in ICBGM’95. In International Conference on BG Modeling (Las Vegas, 1995), pp. 189–194

    Google Scholar 

  11. A.S. Wilsky, E.Y. Chow, X.C. Lou, G.C. Verghese, Analytical redundancy and the design of robust failure detection systems. IEEE Trans. Autom. Control 29(7), 603–614 (1984)

    Article  Google Scholar 

  12. M. Staroswiecki, Quantitative and qualitative models for fault detection and isolation. Mech. Syst. Sig. Process. 14(3), 301–325 (2000)

    Article  Google Scholar 

  13. M. Staroswiecki, G. Comtet-Varga, Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica 37(5), 687–699 (2001)

    MathSciNet  MATH  Google Scholar 

  14. A.K. Samantaray, B. Ould Bouamama, Model-based Process Supervision: A Bond Graph Approach (Springer, London, 2008)

    Google Scholar 

  15. F. Zhao, X. Koutsoukos, H. Haussecker, J. Reich, P. Cheung, Fault modeling for monitoring and diagnosis of sensor-rich hybrid systems, in Proceedings of the IEEE Conference on Decision and, Control (2001), pp. 793–801

    Google Scholar 

  16. F. Zhao, X. Koutsoukos, H. Haussecker, J. Reich, P. Cheung, Monitoring and fault diagnosis of hybrid systems. IEEE Trans. Syst. Man Cybern. Part B. Cybern. 35(6), 1225–1240 (2005)

    Google Scholar 

  17. S. Narasimhan, Model-based Diagnosis of Hybrid Systems, Ph.D. Thesis, (Vanderbilt University, 2002)

    Google Scholar 

  18. S. Narasimhan, G. Biswas, Model-based diagnosis of hybrid systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 37(3), 348–360 (2007)

    Google Scholar 

  19. V. Cocquempot, T. El Mezyani, M. Staroswiecki, Fault detection and isolation for hybrid systems using structured parity residuals, in 5th Asian Control Conference, vol. 2, (2004), pp. 1204–1212

    Google Scholar 

  20. P.J. Mosterman, G. Biswas, A theory of discontinuities in physical system models. J. Franklin Inst. 335(B), 401–439 (1998)

    Google Scholar 

  21. I. Roychoudhury, M. Daigle, G. Biswas, X. Koutsoukos, P.J. Mosterman, A method for efficient simulation of hybrid bond graph, in Proceedings of the International Conference Bond Graph Modeling Simulation, ICBGM 2007, 335(B), (2007), pp. 177–184

    Google Scholar 

  22. I. Roychoudhury, M. Daigle, G. Biswas, X. Koutsoukos, Efficient simulation of hybrid systems: an application to electrical power distribution systems, in Proceedings of the 22nd European Conference on Modeling and Simulation (ECMS 2008) (2008), pp. 471–477

    Google Scholar 

  23. P.J. Mosterman, Diagnosis of physical systems with hybrid models using parameterized causality, in Hybrid Systems: Computation and Control ’01 (Rome, Italy, 2001), pp. 447–458

    Google Scholar 

  24. C.B. Low, D. Wang, S. Arogeti, J.B. Zhang, Causality assignment and model approximation for hybrid bond graph: fault diagnosis perspectives. IEEE Trans. Autom. Sci. Eng. 7(3), 570–580 (2010)

    Article  Google Scholar 

  25. A.K. Samantaray, K. Medjaher, B.O. Bouamama, M. Staroswieki, G. Dauphin-Tan, Element-based modelling of thermofuild systems for sensor placement and fault detection. SIMULATION 80, 381–398 (2004)

    Article  Google Scholar 

  26. S.A. Arogeti, D.W. Wang, C.B. Low, Mode tracking and FDI of hybrid systems, in 10th International Conference on ICARCV (2008), pp. 892–897

    Google Scholar 

  27. C.B. Low, D. Wang, S. Arogeti, J.B. Zhang, Monitoring ability and quantitative fault diagnosis using hybrid bond graph, in International Federation of Automatic Control (IFAC), (Seoul, Korea, 2008), pp. 10516–10521

    Google Scholar 

  28. C.B. Low, D. Wang, S. Arogeti, M. Luo, Quantitative hybrid bond graph-based fault detection and isolation. IEEE Trans. Autom. Sci. Eng. 7(3), 558–569 (2010)

    Article  Google Scholar 

  29. M.A. Djeziri, R. Merzouki, B. Ould Bouamama, Robust fault diagnosis by using bond graph approach. IEEE/ASME Tranac. Mechatron. 12(6), 599–611 (2007)

    Article  Google Scholar 

  30. M.A. Djeziri, B. Ould Bouamama, R. Merzouki, Modeling and robust FDI of steam generator using uncertain bond graph model. J. Process Control 19(1), 149–162 (2008)

    Article  Google Scholar 

  31. P.J. Mosterman, G. Biswas, A theory of discontinuities in physical system models. J. Franklin Inst. 335B(3), 401–439 (1998)

    MATH  Google Scholar 

  32. V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis. Part I: Quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)

    Article  Google Scholar 

  33. V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, A review of process fault detection and diagnosis. Part II: Quanlitative models and search strategies. Comput. Chem. Eng. 27(3), 313–326 (2003)

    Article  Google Scholar 

  34. V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, A review of process fault detection and diagnosis. Part III: Process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003)

    Article  Google Scholar 

  35. J. Cusidó, L. Romeral, J.A. Ortega, J.A. Rosero, A.G. Espinosa, Fault detection in induction machines using power spectral density in wavelet decomposition. IEEE Trans. Ind. Electron. 55(2), 633–643 (2008)

    Article  Google Scholar 

  36. M. Mlödt, P. Granjon, B. Raison, G. Rostaing, Models for bearing damage detection in induction motors using stator current monitoring. IEEE Trans. Ind. Electron. 55(4), 1813–1822 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danwei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, D., Yu, M., Low, C., Arogeti, S. (2013). Quantitative Hybrid Bond Graph-Based Fault Detection and Isolation. In: Model-based Health Monitoring of Hybrid Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7369-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7369-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7368-8

  • Online ISBN: 978-1-4614-7369-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics