Advertisement

Discussion

Chapter

Abstract

We have shown with our realistic measurements of the induced electric field (Chap. 2) that head motion occurs during Transcranial Magnetic Stimulation (TMS) applications and cannot be suppressed completely. Even small changes in the position and/or orientation of the coil with respect to the target can have a substantial impact on the stimulus intensity and therefore on the stimulation outcome. Robotic motion compensation, however, effectively reduces these changes, thus maintaining the initial magnitude and orientation throughout treatment

Keywords

Transcranial Magnetic Stimulation Iterative Close Point Head Band Gravity Compensation Head Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Advanced Neuro Technology B.V.: The lates addition to SmartMove: TouchSense (2012). http://ant-neuro.com/showcases_and_projects/touchsense/; visited on 23 May 2012
  2. 2.
    Albu-Schäffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimböck, T., Hirzinger, G.: The DLR lightweight robot—design and control concepts for robots in human environments. Ind. Robot 34(5), 376–385 (2007)CrossRefGoogle Scholar
  3. 3.
    Amaya, F., Paulus, W., Treue, S., Liebetanz, D.: Transcranial magnetic stimulation and PAS-induced cortical neuroplasticity in the awake rhesus monkey. Clin. Neurophysiol. 121(12), 2143–2151 (2010). doi: 10.1016/j.clinph.2010.03.058 CrossRefGoogle Scholar
  4. 4.
    Bodensteiner, C., Darolti, C., Schweikard, A.: Achieving super-resolution x-ray imaging with mobile c-arm devices. Int. J. Med. Robot. Comput. Assist. Surg. 5(3), 243–256 (2009). doi: 10.1002/rcs.255 CrossRefGoogle Scholar
  5. 5.
    Ehlers, K.: Anwendung der faceapi zur bewegungskompensation für die robotergestützte transkranielle magnetstimulation. BSc thesis, University of Lübeck (2009)Google Scholar
  6. 6.
    Ernst, F., Richter, L., Matthäus, L., Martens, V., Bruder, R., Schlaefer, A., Schweikard, A.: Non-orthogonal tool/flange and robot/world calibration for realistic tracking scenarios. Int. J. Med. Robot. Comput. Assist. Surg. 8(4), 407–420 (2012). doi: 10.1002/rcs.1427 CrossRefGoogle Scholar
  7. 7.
    Finke, M., Schweikard, A.: Motorization of a surgical microscope for intra-operative navigation and intuitive control. Int. J. Med. Robot. Comput. Assist. Surg. 6(3), 269–280 (2010). doi: 10.1002/rcs.314 CrossRefGoogle Scholar
  8. 8.
    International Organisation for Standardization (ed.): ISO 9241-11: Ergonomic requirements for office work with visual display terminals (VDTs)—Part 11: Guidance on usability (1998)Google Scholar
  9. 9.
    Lebossé, C., Renaud, P., Bayle, B., de Mathelin, M., Piccin, O., Foucher, J.: A robotic system for automated image-guided transcranial magnetic stimulation. In: Life Science Systems and Applications Workshop, 2007. LISA 2007. IEEE/NIH, pp. 55–58 (2007). doi: 10.1109/lssa.2007.4400883
  10. 10.
    Matthäus, L.: A robotic assistance system for transcranial magnetic stimulation and its application to motor cortex mapping. Ph.D. thesis, Universität zu Lübeck (2008)Google Scholar
  11. 11.
    Qiu, D., May, S., Nüchter, A.: GPU-accelerated nearest neighbor search for 3D registration. Lect. Notes Comput. Sci. 5815, 194–203 (2009)CrossRefGoogle Scholar
  12. 12.
    Ruohonen, J., Karhu, J.: Navigated transcranial magnetic stimulation. Clin. Neurophysiol. 40(1), 7–17 (2010). doi: 10.1016/j.neucli.2010.01.006 CrossRefGoogle Scholar
  13. 13.
    Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3D robotics hand-eye calibration. In: Proceedings of the 4th International Symposium on Robotics Research, pp. 287–297. MIT Press, Cambridge, MA, USA (1988)Google Scholar
  14. 14.
    Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot. Autom. 5(3), 345–358 (1989). doi: 10.1109/70.34770 CrossRefGoogle Scholar
  15. 15.
    Zorn, L., Renaud, P., Bayle, B., Goffin, L., Lebossé, C., de Mathelin, M., Foucher, J.: Design and evaluation of a robotic system for transcranial magnetic stimulation. IEEE Trans. Biomed. Eng. 59(3), 805–815 (2012). doi: 10.1109/tbme.2011.2179938 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Robotics and Cognitive SystemsUniversity of LübeckLübeckGermany

Personalised recommendations