Skin Cancer pp 59-74 | Cite as

Molecular Pathology of Melanocytic Skin Cancer

  • Giuseppe PalmieriEmail author
  • Peter Sarantopoulos
  • Raymond Barnhill
  • Alistair Cochran
Part of the Current Clinical Pathology book series (CCPATH)


Characterization of the molecular mechanisms involved in the development and progression of melanoma could be helpful in identifying the pathogenetic profiles underlying both biological and clinical behaviors of the disease. Increasing evidence indicates the existence of a complex molecular machinery that provides checks and balances in normal melanocytes, whose alterations are implicated in generating different subsets of melanoma patients with different prognoses and/or clinical outcomes. Knowledge of the main molecular features underlying the pathogenesis of melanoma is thus crucial for the development of new diagnostic and prognostic tools.


Comparative Genomic Hybridization BRAF Mutation Primary Melanoma Uveal Melanoma Array Comparative Genomic Hybridization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Molecular marker

Key molecular alteration which may help diagnosis, staging, and/or prognosis of cancer patients.

Target therapy

Treatment based on drugs specific for mutated/altered oncogenic protein playing a key role in molecular pathways involved in tumorigenesis.


Induction of malignant transformation due to a complex combination of genetic and molecular alterations.


  1. 1.
    Jhappan C, Noonan FP, Merlino G. Ultraviolet radiation and cutaneous malignant melanoma. Oncogene. 2003;22:3099–112.PubMedCrossRefGoogle Scholar
  2. 2.
    Thompson JF, Scolyer RA, Kefford RF. Cutaneous melanoma. Lancet. 2005;365:687–701.PubMedGoogle Scholar
  3. 3.
    Cho E, Rosner BA, Feskanich D, Colditz GA. Risk factors and individual probabilities of melanoma for whites. J Clin Oncol. 2005;23:2669–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Curado MP, Edwards B, Shin HR, et al., editors. Cancer incidence in five continents, vol. IX, International Agency for Research on Cancer (IARC) Scientific Publications, No. 160. Lyon: IARC; 2007.Google Scholar
  5. 5.
    Rigel DS. Epidemiology of melanoma. Semin Cutan Med Surg. 2010;29:204–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Linos E, Swetter S, Cockburn MG, et al. Increasing burden of melanoma in the United States. J Invest Dermatol. 2009;129:1666–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Welch HG, Woloshin S, Schwartz LM. Skin biopsy rates and incidence of melanoma: population based ecological study. BMJ. 2005;331:481.PubMedCrossRefGoogle Scholar
  8. 8.
    de Vries E, Coebergh JW. Melanoma incidence has risen in Europe. BMJ. 2005;331:698.PubMedCrossRefGoogle Scholar
  9. 9.
    Palmieri G, Casula M, Sini MC, et al. Issues affecting molecular staging in the management of patients with melanoma. J Cell Mol Med. 2007;11:1052–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Giehl K. Oncogenic Ras in tumor progression and metastasis. Biol Chem. 2005;386:193–205.PubMedGoogle Scholar
  11. 11.
    Heidorn SJ, Milagre C, Whittaker S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140:209–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Patton EE, Widlund HR, Kutok JL, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005;15:249–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Wajapeyee N, Serra RW, Zhu X, et al. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132:363–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Dhomen N, Reis-Filho JS, da Rocha Dias S, et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009;15:294–303.PubMedCrossRefGoogle Scholar
  18. 18.
    Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Smalley KS, Lioni M, Dalla Palma M, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther. 2008;7:2876–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Ascierto PA, De Maio E, Bertuzzi S, et al. Future perspectives in melanoma research. Meeting report from the “Melanoma Research: a bridge Naples-USA. Naples, December 6th–7th 2010”. J Transl Med. 2011;9:32.PubMedCrossRefGoogle Scholar
  21. 21.
    Pomerantz J, Schreiber-Agus N, Lie’geois NJ. The Ink4a tumor suppressor gene product, 19Arf, interacts with MDM2 and neutralizes DM2’s inhibition of p53. Cell. 1998;92:713–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Palmieri G, Capone ME, Ascierto ML, et al. Main roads to melanoma. J Transl Med. 2009;7:86.PubMedCrossRefGoogle Scholar
  24. 24.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Box NF, Terzian T. The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res. 2008;21:525–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Meyle KD, Guldberg P. Genetic risk factors for melanoma. Hum Genet. 2009;126:499–510.PubMedCrossRefGoogle Scholar
  27. 27.
    Fargnoli MC, Gandini S, Peris K, et al. MC1R variants increase melanoma risk in families with CDKN2A mutations: a meta-analysis. Eur J Cancer. 2010;46:1413–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Scott MC, Wakamatsu K, Ito S, et al. Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J Cell Sci. 2002;115:2349–55.PubMedGoogle Scholar
  29. 29.
    Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006;12:406–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Hauser JE, Kadekaro AL, Kavanagh RJ, et al. Melanin content and MC1R function independently affect UVR-induced DNA damage in cultured human melanocytes. Pigment Cell Res. 2006;19:303–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Landi MT, Bauer J, Pfeiffer RM, et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006;313:521–2.PubMedCrossRefGoogle Scholar
  32. 32.
    Fargnoli MC, Pike K, Pfeiffer RM, et al. MC1R variants increase risk of melanomas harboring BRAF mutations. J Invest Dermatol. 2008;128:2485–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Thomas NE, Kanetsky PA, Edmiston SN, et al. Relationship between germline MC1R variants and BRAF-mutant melanoma in a North Carolina population-based study. J Invest Dermatol. 2010;130:1463–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Scherer D, Rachakonda PS, Angelini S, et al. Association between the germline MC1R variants and somatic BRAF/NRAS mutations in melanoma tumors. J Invest Dermatol. 2010;130:2844–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Hacker E, Hayward NK, Dumenil T, et al. The association between MC1R genotype and BRAF mutation status in cutaneous melanoma: findings from an Australian population. J Invest Dermatol. 2010;130:241–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003;22:3113–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.PubMedCrossRefGoogle Scholar
  38. 38.
    Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving. Oncogene. 2005;24:7435–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Mirmohammadsadegh A, Marini A, Nambiar S, et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res. 2006;66:6546–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Tsao H, Goel V, Wu H, et al. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol. 2004;122:337–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436:117–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Carreira S, Goodall J, Aksan I, et al. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005;433:764–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Loercher AE, Tank EM, Delston RB, Harbour JW. MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol. 2005;168:35–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Wellbrock C, Marais R. Elevated expression of MITF counteracts B-RAF stimulated melanocyte and melanoma cell proliferation. J Cell Biol. 2005;170:703–8.PubMedCrossRefGoogle Scholar
  45. 45.
    McGill GG, Horstmann M, Widlund HR, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002;109:707–18.PubMedCrossRefGoogle Scholar
  46. 46.
    Du J, Widlund HR, Horstmann MA, et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell. 2004;6:565–76.PubMedCrossRefGoogle Scholar
  47. 47.
    Wellbrock C, Rana S, Paterson H, et al. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One. 2008;3:2734.CrossRefGoogle Scholar
  48. 48.
    Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Basseres DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006;25:6817–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ. 2006;13:738–47.PubMedCrossRefGoogle Scholar
  51. 51.
    Jost PJ, Ruland J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007;109:2700–7.PubMedGoogle Scholar
  52. 52.
    Cilloni D, Martinelli G, Messa F, et al. Nuclear factor kB as a target for new drug development in myeloid malignancies. Haematologica. 2007;92:1224–9.PubMedCrossRefGoogle Scholar
  53. 53.
    McNulty SE, del Rosario R, Cen D, et al. Comparative expression of NFkappaB proteins in melanocytes of normal skin vs. benign intradermal naevus and human metastatic melanoma biopsies. Pigment Cell Res. 2004;17(2):173–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Dhawan P, Singh AB, Ellis DL, Richmond A. Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res. 2002;62:7335–42.PubMedGoogle Scholar
  55. 55.
    Rangaswami H, Bulbule A, Kundu GC. Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced MAPK/IkappaBalpha kinase-dependent nuclear factor kappaB-mediated promatrix metalloproteinase-9 activation. J Biol Chem. 2004;279:38921–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Uffort DG, Grimm EA, Ellerhorst JA. NF-kappaB mediates mitogen-activated protein kinase pathway-dependent iNOS expression in human melanoma. J Invest Dermatol. 2009;129:148–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Chami L, Lassau N, Chebil M, Robert C. Imaging of melanoma: usefulness of ultrasonography before and after contrast injection for diagnosis and early evaluation of treatment. Clin Cosmet Investig Dermatol. 2011;4:1–6.PubMedGoogle Scholar
  58. 58.
    Cochran AJ, Starz H, Ohsie SJ, et al. Pathologic reporting and special diagnostic techniques for melanoma. Surg Oncol Clin N Am. 2006;15:231–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Barnhill RL, Lugassy C. Angiotropic malignant melanoma and extravascular migratory metastasis: description of 36 cases with emphasis on a new mechanism of tumour spread. Pathology. 2004;36:485–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Balch CM, Gershenwald JE, Atkins MB, et al., editors. AJCC cancer staging manual. 7th ed. American Joint Committee on Cancer. Springer: New York; 2010. p. 325–44.Google Scholar
  61. 61.
    Ohsie SJ, Sarantopoulos GP, Cochran AJ, Binder SW. Immunohistochemical characteristics of melanoma. J Cutan Pathol. 2008;35:433–44.PubMedCrossRefGoogle Scholar
  62. 62.
    Elder DE, Xiaowei X. The approach to the patient with a difficult melanocytic lesion. Pathology. 2004;36:428.PubMedCrossRefGoogle Scholar
  63. 63.
    Pinkel D, Albertson D. Array comparative genomic hybridization and its applications in cancer. Nat Genet Suppl. 2005;37:S11–7.CrossRefGoogle Scholar
  64. 64.
    Bastian BC, Olshen AB, LeBoit PE, et al. Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol. 2003;163:1765–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Gerami P, Jewell SS, Morrison LE, et al. Fluorescence in situ hybridization in melanoma. Arch Pathol Lab Med. 2011;135:830–7.PubMedGoogle Scholar
  66. 66.
    Gaiser T, Kutzner H, Palmedo G, et al. Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod Pathol. 2010;23:413–9.PubMedCrossRefGoogle Scholar
  67. 67.
    North JP, Vetto JT, Murali R, et al. Assessment of copy number status of chromosomes 6 and 11 by FISH provides independent prognostic information in primary melanoma. Am J Surg Pathol. 2011;35:1146–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Koh SS, Opel ML, Wei J-P, et al. Molecular classification of melanomas and nevi using gene expression microarray signatures and formalin-fixed and paraffin-embedded tissue. Mod Pathol. 2009;22:538–46.Google Scholar
  69. 69.
    Koh SS, Wei J-P, Li X, et al. Differential gene expression profiling of primary cutaneous melanoma and sentinel lymph node metastases. Mod Pathol. 2012;25:828–37.PubMedCrossRefGoogle Scholar
  70. 70.
    Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463:191–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Wei X, Walia V, Lin JC, et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet. 2011;43:442–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Miller AJ, Mihm MC. Melanoma. N Engl J Med. 2006;355:51–65.PubMedCrossRefGoogle Scholar
  73. 73.
    Zabierowski SE, Herlyn M. Melanoma stem cells: the dark seed of melanoma. J Clin Oncol. 2008;26:2890–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Giuseppe Palmieri
    • 1
    Email author
  • Peter Sarantopoulos
    • 2
  • Raymond Barnhill
    • 2
  • Alistair Cochran
    • 3
  1. 1.Department of Cancer GeneticsInstitute of Biomolecular Chemistry, National Research Council (CNR)SassariItaly
  2. 2.Department of Pathology and Laboratory MedicineDavid Geffen School of Medicine at UCLA, and Jonsson Comprehensive Cancer CenterLos AngelesUSA
  3. 3.Departments of Pathology, Laboratory Medicine and SurgeryDavid Geffen School of Medicine at UCLA, and Jonsson Comprehensive Cancer CenterLos AngelesUSA

Personalised recommendations