Skin Cancer pp 279-290 | Cite as

Multiphoton Laser Microscopy with Fluorescence Lifetime Imaging and Skin Cancer

  • Stefania SeidenariEmail author
  • Federica Arginelli
  • Marco Manfredini
Part of the Current Clinical Pathology book series (CCPATH)


To improve the diagnosis of skin tumours, extensive research on new technologies has been carried out introducing real-time imaging methods as multiphoton laser tomography (MPT) associated to fluorescence lifetime imaging (FLIM). Multiphoton microscopy relies on the simultaneous absorption of two or more photons of low energy in the near-infrared spectrum, avoiding biological tissue damage that occurs with higher laser powers.

With multiphoton microscopy, endogenous fluorophores, including NADH, NADPH and many others, can be efficiently excited. Since the technique is non-invasive and the laser illumination is harmless, in vivo examination by MPT/FLIM can be repeated on the same site without restrictions, enabling long-term studies of skin diseases. Horizontal and vertical optical sections give the possibility to study the tissue sample three-dimensionally with a subcellular spatial resolution. The MPT/FLIM technique has numerous applications in dermatology, being suitable for the study of many physiological and pathological conditions of the skin in vivo, on ex vivo samples and on cell cultures. The application of MPT/FLIM to the field of skin tumours provides imaging at a cellular and at an architectural level, although the field of view is at present limited to the exploration of a square area of 358 × 358 μm.


Basal Cell Carcinoma Second Harmonic Generation Fluorescence Lifetime Skin Tumour Melanocytic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




Flavin adenine dinucleotide.


Fluorescence lifetime imaging.


Förster resonance energy transfer, is a mechanism describing energy transfer between two chromophores.


Multiphoton excitation.


Multiphoton laser tomography


Multiphoton laser microscopy with Fluorescence lifetime imaging.

Multiphoton microscopy

is a specialized optical microscope that relies on the simultaneous absorption of two or more photons of low energy in the near-infrared spectrum, avoiding biological tissue damage that occurs with higher laser powers.


Nicotinamide adenine dinucleotide.

SHG (second harmonic generation)

is a method for probing interfaces in atomic and molecular systems.


  1. 1.
    Garbe C, Blum A. Epidemiology of cutaneous melanoma in Germany and worldwide. Skin Pharmacol Appl Skin Physiol. 2001;14(5):280–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Welch H, Woloshin S, Schwartz L. Skin biopsy rates and incidence of melanoma: population based ecological study. BMJ. 2005;331(7515):481.PubMedCrossRefGoogle Scholar
  3. 3.
    Stang A, Ziegler S, Buchner U, et al. Malignant melanoma and nonmelanoma skin cancers in Northrhine-Westphalia. Germany: a patient-vs. diagnosis-based incidence approach. Int J Dermatol. 2007;46(6):564–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Roewert-Huber J, Lange-Aschenfeldt B, Stockfleth E, et al. Epidemiology and etiology of basal cell carcinoma. Br J Dermatol. 2007;157(Suppl):47–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Leiter U, Garbe C. Epidemiology of melanoma and nonmelanoma skin cancer: the role of sunlight. Adv Exp Med Biol. 2008;624:89–103.PubMedCrossRefGoogle Scholar
  6. 6.
    Morton CA, Mackie RM. Clinical accuracy of the diagnosis of cutaneous malignant melanoma. Br J Dermatol. 1998;138:283–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Dolianitis C, Kelly J, Wolfe R, et al. Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions. Arch Dermatol. 2005;141:1008–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Annessi G, Bono R, Sampogna F, et al. Sensitivity, specificity, and diagnostic accuracy of three dermoscopic algorithmic methods in the diagnosis of doubtful melanocytic lesions: the importance of light brown structureless areas in differentiating atypical melanocytic nevi from thin melanomas. J Am Acad Dermatol. 2007;56:759–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Telfer NR, Colver GB, Morton CA. Guidelines for management of basal cell carcinoma. Br J Dermatol. 2008;159:35–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Argenziano G, Soyer HP, Chimenti S, et al. Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. J Am Acad Dermatol. 2003;48:679–93.PubMedCrossRefGoogle Scholar
  11. 11.
    González S, Tannus Z. Real-time in vivo confocal reflectance microscopy of basal cell carcinoma. J Am Acad Dermatol. 2002;47(6):869–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Pellacani G, Cesinaro AM, Seidenari S. Reflectance-mode confocal microscopy of pigmented skin lesions – improvement in melanoma diagnostic specificity. J Am Acad Dermatol. 2005;53(6):979–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Guitera P, Pellacani G, Longo C, et al. In vivo reflectance confocal microscopy enhances secondary evaluation of melanocytic lesions. J Invest Dermatol. 2009;129(1):131–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Vestergaard ME, Macaskill P, Holt PE, et al. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br J Dermatol. 2008;159:669–76.PubMedGoogle Scholar
  15. 15.
    Bauer J, Leinweber B, Metzler G, et al. Correlation with digital dermoscopic images can help dermatopathologists to diagnose equivocal skin tumours. Br J Dermatol. 2006;155(3):546–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248:73–6.PubMedCrossRefGoogle Scholar
  17. 17.
    König K, Schenke-Layland K, Riemann I, et al. Multiphoton autofluorescence imaging of intratissue elastic fibers. Biomaterials. 2005;26(5):495–500.PubMedCrossRefGoogle Scholar
  18. 18.
    Lakowicz JR. Principles of fluorescence spectroscopy. New York: Springer; 2006.CrossRefGoogle Scholar
  19. 19.
    Zhao J, Chen J, Yang Y, et al. Jadassohn-Pellizzari anetoderma: study of multiphoton microscopy based on two-photon excited fluorescence and second harmonic generation. Eur J Dermatol. 2009;19(6):570–5.PubMedGoogle Scholar
  20. 20.
    König K, Riemann I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picoseconds time resolution. J Biomed Opt. 2003;8(3):432–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Riemann I, Dimitrow E, Fischer P, Reif A, Kaatz M, Elsner P, et al. High resolution multiphoton tomography of human skin in vivo and in vitro. SPIE-Proceeding. 2004;5312:21–8.CrossRefGoogle Scholar
  22. 22.
    König K. Clinical multiphoton tomography. J Biophotonics. 2008;1(1):13–23. Review.PubMedCrossRefGoogle Scholar
  23. 23.
    Dimitrow E, Riemann I, Ehlers A, et al. Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp Dermatol. 2009;18(6):509–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Elson D, Requejo-Isidro J, Munro I, et al. Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem Photobiol Sci. 2004;3:795–801.PubMedCrossRefGoogle Scholar
  25. 25.
    Galletly NP, McGinty J, Dunsby C, et al. Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Br J Dermatol. 2008;159:152–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Hanson KM, Behne MJ, Barry NP, et al. Two-photon fluorescence imaging of the skin stratum corneum pH gradient. Biophys J. 2002;83:1682–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Kaneko H, Putzier I, Frings S, et al. Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci. 2004;24:7931–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Lakowicz JR, Szmacinski H. Fluorescence-lifetime based sensing of pH, Ca2þ, and glucose. Sens Actuator Chem. 1993;11:133–4.CrossRefGoogle Scholar
  29. 29.
    Gerritsen HC, Sanders R, Draaijer A, et al. Fluorescence lifetime imaging of oxygen in cells. J Fluoresc. 1997;7:11–6.CrossRefGoogle Scholar
  30. 30.
    Schweitzer D, Hammer M, Schweitzer F, et al. In vivo measurement of time-resolved autofluorescence at the human fundus. J Biomed Opt. 2004;9:1214–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Treanor B, Lanigan PMP, Suhling K, et al. Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse. J Microsc. 2005;217:36–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Calleja V, Ameer-Beg S, Vojnovic B, et al. Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem J. 2003;372:33–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Kelbauskas L, Dietel W. Internalization of aggregated photosensitizers by tumor cells: subcellular time-resolved fluorescence spectroscopy on derivates of pyropheophorbide-a ethers and chlorine6 under femtosecond one- and two-photon excitation. Photochem Photobiol. 2002;76:686–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Van Zandvoort MAMJ, de Grauw CJ, Gerritsen HC, et al. Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of SYTO13 in healthy and apoptotic cells. Cytometry. 2002;47:226–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Skala MC, Riching KM, Gendron-Fitzpatrick A, et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A. 2007;104(49):19495.CrossRefGoogle Scholar
  36. 36.
    Lakowicz JR, Szmacinski H, Nowaczyk K, et al. Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A. 1992;89:1271–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Becker W, Bergmann A, Hink MA, et al. Fluorescence lifetime imaging by time-correlated single photon counting. Microsc Res Tech. 2004;63:58–66.PubMedCrossRefGoogle Scholar
  38. 38.
    Peter M, Ameer-Beg SM, Hughes MKY, et al. Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J. 2005;88:1224–37.PubMedCrossRefGoogle Scholar
  39. 39.
    Pitts JD, Sloboda RD, Dragnev KH, et al. Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells. J Biomed Opt. 2001;6:31–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Galeotti T, van Rossum GD, Mayer DH, et al. On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues. Eur J Biochem. 1970;17:485–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Palmer GM, Keely PJ, Breslin TM, et al. Autofluorescence spectroscopy of normal and malignant human breast cell lines. Photochem Photobiol. 2003;78:462–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Kollias N, Zonios G, Stamatas GN. Fluorescence spectroscopy of skin. Vib Spectrosc. 2002;28(1):17–23.CrossRefGoogle Scholar
  43. 43.
    Zipfel WR, Williams RM, Christie R, et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A. 2003;100(12):7075–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Schenke-Layland K, Riemann I, Damour O, et al. Two-photon microscopes and in vivo multiphoton tomographs-powerful diagnostic tools for tissue engineering and drug delivery. Adv Drug Deliv Rev. 2006;58(7):878–96.PubMedCrossRefGoogle Scholar
  45. 45.
    Becker W, Bergmann A, Biskup C. Multispectral fluorescence lifetime imaging by TCSPC. Microsc Res Tech. 2007;70(5):403–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Lin SJ et al. Multiphoton microscopy: a new paradigm in dermatological imaging. Eur J Dermatol. 2007;17(5):361–6.PubMedGoogle Scholar
  47. 47.
    Tsai TH, Jee SH, Dong CY, et al. Multiphoton microscopy in dermatological imaging. J Dermatol Sci. 2009;56(1):1–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Teuchner K, Ehlert J, Freyer W, et al. Fluorescence studies of melanin by stepwise two-photon femtosecond laser excitation. J Fluoresc. 2000;10:275–81.CrossRefGoogle Scholar
  49. 49.
    Rice WL, Kaplan DL, Georgakoudi I. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PLoS One. 2010;5(4):e10075.PubMedCrossRefGoogle Scholar
  50. 50.
    Seidenari S, Schianchi S, Azzoni P, et al. High-resolution multiphoton tomography and fluorescence lifetime imaging of UVB-induced cellular damage on cultured fibroblasts producing fibres. Skin Res Technol. 2013. [Epub ahead of print].Google Scholar
  51. 51.
    Benati E, Bellini V, Borsari S, et al. Quantitative evaluation of healthy epidermis by means of Multiphoton microscopy and FLIM. Skin Res Technol. 2011;17(3): 295–303.Google Scholar
  52. 52.
    Cicchi R, Massi D, Sestini S, et al. Multidimensional non-linear laser imaging of basal cell carcinoma. Opt Express. 2007;15(16):10135–48.PubMedCrossRefGoogle Scholar
  53. 53.
    Paoli J, Smedh M, Wennberg AM, et al. Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. J Invest Dermatol. 2008;128(5):1248–55.PubMedCrossRefGoogle Scholar
  54. 54.
    De Giorgi V, Massi D, Sestini S, et al. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences. J Eur Acad DermatolVenereol. 2009;23(3):314–6.CrossRefGoogle Scholar
  55. 55.
    Paoli J, Smedh M, Ericson MB. Multiphoton laser scanning microscopy-a novel diagnostic method for superficial skin cancers. Semin Cutan Med Surg. 2009;28(3):190–5. Review.PubMedCrossRefGoogle Scholar
  56. 56.
    Lin SJ, Jee SH, Kuo CJ, et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett. 2006;31:2756–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Brancaleon L, Durkin AJ, Tu JH, et al. In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem Photobiol. 2001;73:178–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Seidenari S, Arginelli F, Dunsby C, French P, König K, Magnoni C, Manfredini M, Talbot C, Ponti G. Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: morphologic features for non-invasive diagnostics. Exp Dermatol. 2012;21(11):831–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Skala MC, Squirrell JM, Vrotsos KM, et al. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissue. Cancer Res. 2005;65:1180–6.PubMedCrossRefGoogle Scholar
  60. 60.
    White FH, Gohari K, Smith CJ. Histological and ultrastructural morphology of 7,12 dimethylbenz(a)-anthracene carcinogenesis in hamster cheek pouch epithelium. Diagn Histopathol. 1981;4:307–33.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefania Seidenari
    • 1
    Email author
  • Federica Arginelli
    • 1
  • Marco Manfredini
    • 1
  1. 1.Department of DermatologyUniversity of Modena and Reggio Emilia, Skin CenterModenaItaly

Personalised recommendations