Skip to main content

Autoimmune Mechanisms Contributing to Chronic Obstructive Pulmonary Disease

  • Chapter
  • First Online:
Smoking and Lung Inflammation

Abstract

The pathophysiology of smoking-related chronic obstructive pulmonary disease (COPD) and lung parenchymal destruction (emphysema) has evolved over time from simplistic concepts involving only neutrophils and macrophages to more comprehensive models that further include adaptive immune cells such as T cells and B cells in addition to antigen presenting cells (APC). Evidence from human studies specifically point to a role for the recruitment and activation of pathogenic lymphocytes and lung APC in emphysema; similarly, animal models have confirmed a complex role for the immune response in progressive smoke-induced emphysema. Increased numbers of activated APCs, T helper 1 (Th1), and Th17 cells are now clearly associated with smoke induced lung inflammation and the canonical cytokines produced by these cells, including IFN-γ and IL-17A, constitute critical effectors of disease through their ability to promulgate the pro-elastolytic lung environment that leads to emphysema. T and B cells with autoimmune specificity directed toward lung matrix proteins, especially elastin and potentially vascular endothelium and airway epithelium, specifically appear to distinguish COPD patients with emphysema from those without this devastating complication. These and further discoveries will permit the development of improved diagnostic, prognostic and therapeutic strategies in COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CDC (2009) Deaths from chronic obstructive pulmonary disease – United States, 2000–2005. J Am Med Assoc 301(13):1331–1333

    Google Scholar 

  2. World, Health, Report (2000) World Health Organization, Geneva. http://www.who.int/topics/tobacco/en/ Accessed June 2013

  3. Hesselbacher S, Ross R, Schabath M, Smith E, Perusich S, Barrow N et al (2011) Cross-sectional analysis of the utility of pulmonary function tests in predicting emphysema in ever-smokers. Int J Environ Res Public Health (Special issue: “Tobacco Smoking: Public Health, Science, and Policy”) 8(5):1324–1340

    Article  Google Scholar 

  4. Spaggiari E, Zompatori M, Verduri A, Chetta A, Ormitti F, Sverzellati N et al (2005) Early smoking-induced lung lesions in asymptomatic subjects. Correlations between high resolution dynamic CT and pulmonary function testing. Radiol Medica 109(1–2):27–39

    CAS  Google Scholar 

  5. Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q et al (2007) A risk model for prediction of lung cancer. J Natl Cancer Inst 99(9):715–726

    Article  PubMed  Google Scholar 

  6. Wilson DO, Weissfeld JL, Balkan A, Schragin JG, Fuhrman CR, Fisher SN et al (2008) Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med 178(7):738–744

    Article  PubMed  Google Scholar 

  7. Kaplan PD, Kuhn C, Pierce JA (1973) The induction of emphysema with elastase. I. The evolution of the lesion and the influence of serum. J Lab Clin Med 82(3):349–356

    PubMed  CAS  Google Scholar 

  8. Shapiro SD (1994) Elastolytic metalloproteinases produced by human mononuclear phagocytes. Potential roles in destructive lung disease. Am J Respir Crit Care Med 150(6 Pt 2):S160–S164

    Article  PubMed  CAS  Google Scholar 

  9. Senior RM, Connolly NL, Cury JD, Welgus HG, Campbell EJ (1989) Elastin degradation by human alveolar macrophages. A prominent role of metalloproteinase activity. Am Rev Respir Dis 139(5):1251–1256

    Article  PubMed  CAS  Google Scholar 

  10. Hogg JC, Timens W (2009) The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 4:435–459

    Article  PubMed  CAS  Google Scholar 

  11. Churg A, Zay K, Shay S, Xie C, Shapiro SD, Hendricks R et al (2002) Acute cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am J Respir Cell Mol Biol 27(3):368–374

    Article  PubMed  CAS  Google Scholar 

  12. Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, Csizmadia E et al (2008) Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177(2):156–163

    Article  PubMed  Google Scholar 

  13. Senior RM, Griffin GL, Mecham RP, Wrenn DS, Prasad KU, Urry DW (1984) Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol 99(3):870–874

    Article  PubMed  CAS  Google Scholar 

  14. van Houwelingen AH, Weathington NM, Verweij V, Blalock JE, Nijkamp FP, Folkerts G (2008) Induction of lung emphysema is prevented by L-arginine-threonine-arginine. FASEB J 22(9):3403–3408

    Article  PubMed  Google Scholar 

  15. Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS et al (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12(3):317–323

    Article  PubMed  CAS  Google Scholar 

  16. Saetta M, Baraldo S, Corbino L, Turato G, Braccioni F, Rea F et al (1999) CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160(2):711–717

    Article  PubMed  CAS  Google Scholar 

  17. Anthonisen NR, Connett JE, Murray RP (2002) Smoking and lung function of Lung Health Study participants after 11 years. Am J Respir Crit Care Med 166(5):675–679

    Article  PubMed  Google Scholar 

  18. Cosio MG, Guerassimov A (1999) Chronic obstructive pulmonary disease. Inflammation of small airways and lung parenchyma. Am J Respir Crit Care Med 160(5 Pt 2):S21–S25

    Article  PubMed  CAS  Google Scholar 

  19. Palmer MT, Weaver CT (2010) Autoimmunity: increasing suspects in the CD4+ T cell lineup. Nat Immunol 11(1):36–40

    Article  PubMed  CAS  Google Scholar 

  20. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  21. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162(1):1–11

    Article  PubMed  CAS  Google Scholar 

  22. Hanauer SB, Cohen RD, Becker RV 3rd, Larson LR, Vreeland MG (1998) Advances in the management of Crohn’s disease: economic and clinical potential of infliximab. Clin Ther 20(5):1009–1028

    Article  PubMed  CAS  Google Scholar 

  23. Grumelli S, Corry DB, Song LZ, Song L, Green L, Huh J et al (2004) An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 1(1):e8

    Article  PubMed  Google Scholar 

  24. Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C et al (2001) The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 107(11):1357–1364

    Article  PubMed  CAS  Google Scholar 

  25. Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S et al (2007) Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 13(5):567–569

    Article  PubMed  CAS  Google Scholar 

  26. Akers S, Kucich U, Swartz M, Rosen G, Glass M, Rosenbloom J et al (1992) Specificity and sensitivity of the assay for elastin-derived peptides in chronic obstructive pulmonary disease. Am Rev Respir Dis 145(5):1077–1081

    Article  PubMed  CAS  Google Scholar 

  27. Kucich U, Christner P, Lippmann M, Fein A, Goldberg A, Kimbel P et al (1983) Immunologic measurement of elastin-derived peptides in human serum. Am Rev Respir Dis 127(2):S28–S30

    PubMed  CAS  Google Scholar 

  28. Shan M, Han-Fang Cheng HF, Song LZ, Roberts L, Green L, Hacken-Bitar J et al (2009) Lung myeloid dendritic cells coordinately induce Th1 and Th17 responses in human emphysema. Sci Transl Med 4(1):132–140

    Google Scholar 

  29. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24(6):677–688

    Article  PubMed  CAS  Google Scholar 

  30. Karayama M, Inui N, Suda T, Nakamura Y, Nakamura H, Chida K (2010) Antiendothelial cell antibodies in patients with COPD. Chest 138(6):1303–1308

    Article  PubMed  Google Scholar 

  31. Low TB, Greene CM, O’Neill SJ, McElvaney NG (2011) Quantification and evaluation of the role of antielastin autoantibodies in the emphysematous lung, Hindawi Publishing Corporation. Pulm Med 2011 (826160):6.doi:10.1155/2011/82616

    PubMed  Google Scholar 

  32. Wood AM, de Pablo P, Buckley CD, Ahmad A, Stockley RA (2011) Smoke exposure as a determinant of autoantibody titre in alpha1-antitrypsin deficiency and COPD. Eur Respir J 37(1):32–38

    Article  PubMed  CAS  Google Scholar 

  33. Greene CM, Low TB, O’Neill SJ, McElvaney NG (2010) Anti-proline-glycine-proline or antielastin autoantibodies are not evident in chronic inflammatory lung disease. Am J Respir Crit Care Med 181(1):31–35

    Article  PubMed  Google Scholar 

  34. Cottin V, Fabien N, Khouatra C, Moreira A, Cordier JF (2009) Anti-elastin autoantibodies are not present in combined pulmonary fibrosis and emphysema. Eur Respir J 33:219–221

    Article  PubMed  CAS  Google Scholar 

  35. Lacroix-Desmazes S, Kaveri SV, Mouthon L, Ayouba A, Malanchere E, Coutinho A et al (1998) Self-reactive antibodies (natural autoantibodies) in healthy individuals. J Immunol Methods 216(1–2):117–137

    Article  PubMed  CAS  Google Scholar 

  36. Zelenay S, Moraes Fontes MF, Fesel C, Demengeot J, Coutinho A (2007) Physiopathology of natural auto-antibodies: the case for regulation. J Autoimmun 29(4):229–235

    Article  PubMed  CAS  Google Scholar 

  37. GeurtsvanKessel CH, Lambrecht BN (2008) Division of labor between dendritic cell subsets of the lung. Mucosal Immunol 1(6):442–450

    Article  PubMed  CAS  Google Scholar 

  38. Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M et al (2000) The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 151(3):673–684

    Article  PubMed  CAS  Google Scholar 

  39. Kool M, van Nimwegen M, Willart MAM, Muskens F, Boon L, Smit JJ et al (2009) An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. J Immunol 183(2):1074–1082

    Article  PubMed  CAS  Google Scholar 

  40. Tsoumakidou M, Zhu J, Wang Z, Thorley A, Kemp S, Tetley T et al (2007) Immunohistochemical detection of dendritic cells in human lung tissue. Histopathology 51(4):565–568

    Article  PubMed  CAS  Google Scholar 

  41. Demedts IK, Bracke KR, Van Pottelberge G, Testelmans D, Verleden GM, Vermassen FE et al (2007) Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 175(10):998–1005

    Article  PubMed  CAS  Google Scholar 

  42. Freeman CM, Martinez FJ, Han MK, Ames TM, Chensue SW, Todt JC et al (2009) Lung dendritic cell expression of maturation molecules increases with worsening chronic obstructive pulmonary disease. Am J Respir Crit Care Med 180(12):1179–1188

    Article  PubMed  Google Scholar 

  43. Singh M, Lee S-H, Porter P, Xu C, Ohno A, Atmar R et al (2010) Human rhinovirus proteinase 2A induces Th1 and Th2 immunity in COPD. J Allergy Clin Immunol 125:1369–1378

    Article  PubMed  CAS  Google Scholar 

  44. Bandi V, Jakubowycz M, Kinyon C, Mason EO, Atmar RL, Greenberg SB et al (2003) Infectious exacerbations of chronic obstructive pulmonary disease associated with respiratory viruses and non-typeable Haemophilus influenzae. FEMS Immunol Med Microbiol 37(1):69–75

    Article  PubMed  CAS  Google Scholar 

  45. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T et al (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11(4):443–451

    Article  PubMed  CAS  Google Scholar 

  46. Doz E, Noulin N, Boichot E, Guenon I, Fick L, Le Bert M et al (2008) Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol 180(2):1169–1178

    PubMed  CAS  Google Scholar 

  47. Gregersen PK, Olsson LM (2009) Recent advances in the genetics of autoimmune disease. Annu Rev Immunol 27:363–391

    Article  PubMed  CAS  Google Scholar 

  48. Lu Y, Tang M, Wasserfall C, Kou Z, Campbell-Thompson M, Gardemann T et al (2006) Alpha1-antitrypsin gene therapy modulates cellular immunity and efficiently prevents type 1 diabetes in nonobese diabetic mice. Hum Gene Ther 17(6):625–634

    Article  PubMed  CAS  Google Scholar 

  49. Koulmanda M, Bhasin M, Hoffman L, Fan Z, Qipo A, Shi H et al (2008) Curative and beta cell regenerative effects of alpha1-antitrypsin treatment in autoimmune diabetic NOD mice. Proc Natl Acad Sci USA 105(42):16242–16247

    Article  PubMed  CAS  Google Scholar 

  50. Lewis EC, Mizrahi M, Toledano M, Defelice N, Wright JL, Churg A et al (2008) Alpha1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc Natl Acad Sci USA 105(42):16236–16241

    Article  PubMed  CAS  Google Scholar 

  51. Pileggi A, Molano RD, Song S, Zahr E, SanJose S, Villate S et al (2008) Alpha-1 antitrypsin treatment of spontaneously diabetic nonobese diabetic mice receiving islet allografts. Transpl Proc 40(2):457–458

    Article  CAS  Google Scholar 

  52. Grimstein C, Choi YK, Satoh M, Lu Y, Wang X, Campbell-Thompson M et al (2010) Combination of alpha-1 antitrypsin and doxycycline suppresses collagen-induced arthritis. J Gene Med 12(1):35–44

    Article  PubMed  CAS  Google Scholar 

  53. Grimstein C, Choi YK, Wasserfall CH, Satoh M, Atkinson MA, Brantly ML et al (2011) Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model. J Transl Med 9:21

    Article  PubMed  CAS  Google Scholar 

  54. Subramanian S, Shahaf G, Ozeri E, Miller LM, Vandenbark AA, Lewis EC et al (2011) Sustained expression of circulating human alpha-1 antitrypsin reduces inflammation, increases CD4+FoxP3+ Treg cell population and prevents signs of experimental autoimmune encephalomyelitis in mice. Metab Brain Dis 26(2):107–113

    Article  PubMed  CAS  Google Scholar 

  55. Gambichler T, Reich S, Banasch M, Altmeyer P (2006) Complex extra-intestinal complications of ulcerative colitis in a patient with alpha1-antitrypsin deficiency. Eur J Med Res 11(3):135–138

    PubMed  CAS  Google Scholar 

  56. Castaldi PJ, Cho MH, Cohn M, Langerman F, Moran S, Tarragona N et al (2010) The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Hum Mol Genet 19(3):526–534

    Article  PubMed  CAS  Google Scholar 

  57. Greene CM, Hassan T, Molloy K, McElvaney NG (2011) The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and alpha-1 anti-trypsin deficiency. Expert Rev Respirat Med 5(3):395–411

    Article  CAS  Google Scholar 

  58. Hersh CP, Silverman EK, Gascon J, Bhattacharya S, Klanderman BJ, Litonjua AA et al (2011) SOX5 is a candidate gene for chronic obstructive pulmonary disease susceptibility and is necessary for lung development. Am J Respir Crit Care Med 183(11):1482–1489

    Article  PubMed  CAS  Google Scholar 

  59. Kong X, Cho MH, Anderson W, Coxson HO, Muller N, Washko G et al (2011) Genome-wide association study identifies BICD1 as a susceptibility gene for emphysema. Am J Respir Crit Care Med 183(1):43–49

    Article  PubMed  CAS  Google Scholar 

  60. Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH et al (2010) Genetic epidemiology of COPD (COPDGene) study design. COPD J Chronic Obstr Pulm Dis 7(1):32–43

    Article  Google Scholar 

  61. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC et al (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5(3):e1000421

    Article  PubMed  Google Scholar 

  62. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP et al (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452(7187):638–642

    Article  PubMed  CAS  Google Scholar 

  63. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F et al (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42(5):448–453

    Article  PubMed  CAS  Google Scholar 

  64. Shapiro SD (2001) End-stage chronic obstructive pulmonary disease: the cigarette is burned out but inflammation rages on. Am J Respir Crit Care Med 164(3):339–340

    Article  PubMed  CAS  Google Scholar 

  65. Cosio MG, Saetta M, Agusti A (2009) Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 360(23):2445–2454

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Corry M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corry, D.B., Kheradmand, F. (2013). Autoimmune Mechanisms Contributing to Chronic Obstructive Pulmonary Disease. In: Rogers, T., Criner, G., Cornwell, W. (eds) Smoking and Lung Inflammation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7351-0_6

Download citation

Publish with us

Policies and ethics